AD-A258 gg’
| mmnmmmmmwm ’ <E§EZZ

PROCESS DEFINITION AND MODELING
GUIDEBOOK i
DTIC

ELECTE
JANG 1993
SPC-92041-CMC D

VERSION 01.00.02
DECEMBER 1992

DISTRIE UL S ATTMENT A

Appicved ior pusuc reieas®
. Distnounca Unbmsted :

|
-CRY/ ccty

AU
L96eZE

2
=

92 12 28 136

PROCESS DEFINITION AND MODELING
GUIDEBOOK /

Aé‘&esih For §
DTIC QUALITY INSPECTED § | NTIS aRA&I |

| 4B AR FT 0
Un.m au .,,oad O
SPC-92041-CMC It
E Br\Q£. m?m___
_Distributian/
{ ;m cLantility y:des
P Svail und/or i
Pist | Special
VERSION 01.00.02 | \ f L
DECEMBER 1992
Produced by the

SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1992 Software Productivity Consortiur Sesvices Corporation, Herndon, Virginia. Permission to use, copy, modify, and
distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and provided that
the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting
documentation. This material isbased in part upon work sponsored by the Defense Advanced Research Projects Agency under Grant
#MDAY72-92-J-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no official
endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity pertaining
to this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE
PRODUCTIVITY CONSORTIUM, INC. AND SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

Statemate is a registered trademark of i-Logix, Inc.

CONTENTS

ACKNOWLEDGEMENTS ceesessecsnns Ceteecteessaseananeaans

1. INTRODUCTION .

ooooooooooooooooooooo 0000000000000 COOIOSIOTIIINITSTTS

1.1 RequestforFeedbackciiiiiiiiiiiiiii i

1.2 Summary Purpose and SCOPEciviiiiiiiiiiiiii ittt

1.3 Motivation

..

1.4 Goal-Driven Process Representationoovuieeiiiiiiiinieneinnnenn.

1.5 The Needto Move Toward Modelscvviiiiiitininreeerenoeensenncnneanns

1.6 Guidebook Organizationciiiiiiiiiiiiiiiinniinieraeneinnnnnnns

1.7 Intended AUAIEnce . ..ot itieienrireseetenneoenaeeaosaosssosassanenennnn

1.8 Typographic Conventionsccoviuiiiiiiieriiieerineronnennnneenns

2. OVERVIEW AND FUNDAMENTAL CONCEPTSccvcevteeecnecnnnes

2.1 The Need for Representing Processes .,coviiiiiniieieiiiiinnnnnnenens

211 Do Suceessful WOTK . ..ottt ittt it teeeneeseneannsonssnesnnsanns

2.1.2 PreSeIVE L eSSONS «vvvvveerreoresensesasecnnsensessseonsscassnsanaans

2.1.3 Training ..

oo

2.1.4 Analyze and COMPAreccovnuuennenernonnnsncasoncacseconnns

2.2 Defined Processes and Process Maturityccoeviniiiineeneeiiennnnnnnnn.

2.3 Alternative Techniques for Process Representationooovinnan..

2.3.1 State Transition Diagramsccooiiiiiniiiiiiiiiiiiiinineennen.

2.3.2 Entry-Task-Validation-Exitcoiiiiiiiiiiiiiiiiiiiinin.

2.3.3 Structured Analysis and Design Techniqueool

2.3.4 Statecharts

..

xix

Contents

235 Petri Nets . ..ottt ittt ittt ittt 2-8
2.3.6 Template SUPPOTtttt ittt iiie it eaeaanans 29
2.4 Common Characteristics In Process Representation 2-10
241 Scalabilityot e i i e et 2-10
242 Applicability i e 2-10
243 Flexibility ... 2-11
244 Readabilityouveinti ittt ittt 2-11
2.4.5 Maintainabilityoiiiiiiiiiiiiiii it e 2-11
24.6 Learnabilitycoouuiuiiiiiii it i e 2-11
2.4.7 RODUSIIESS « ot oveetaesvecerenuneneeneeeeeesnsnnssneseesnssssannnns 2-11
248 FOormalityoouuuniitiiiiiiiiitieireeteietereoneneerenonnennnns 2-12
2.5 Choosing a Process Representation Notationcoovvevviiiiiiiinn.. 2-12
2.5.1 ENVITONMENLSvtvuiinvninnereneeetseesonnnsnrssesconsancannnnas 2-13
2.5.2 RESOUICES ¢ o oo itiiitrtenieennnnsnnsesaseoscesesasassecsonnsnsnnnns 2-13
2.5.3 Budget COnStraintscovvueeereraneeeiaroceasnsoconusoonscsnnns 2-13
T 5 T 2-13
2.5.5 GOAIS .vvvtuvtinareae ettt ate ettt 2-13
2.5.6 SUMIMNATY . ..vtvttutrinienuieessoneneacoasnsnnssasarasssansunsoeeesnns 2-14
2.6 Benefits to the Template-Based Process Representationo..... 2-15
2.6.1 Scalabilityoviiiiiii i i ittt e | ee. 215
2.6.2 Applicabilitycoiiiiiiiii i i e 2-15
2.6.3 FIeibilityoouniiitiiiiiiiiiiiiitiitereerneeiereiacnrennnns 2-16
2.6.4 Readabilitycovnniviiiiiiieiiiinniienneesoneenerinnsenansnns 2-16
2.6.5 Maintainabilityottt et e e 2-16
2.6.6 Learnabilityccotiiiiiiiiiiiiii it 2-16
2.6.7 RODUSINESS ovi ittt iinneiiinnnnosnnocaananeeesnacenasnnns 2-16
2.6.8 FOrmalityc.cuiuiineneenierennennnnnseesesensnennnosennnnnns 2-17

Contents

2.6.9 SUMMATY ...ttt ittt eennnretannnsannnnnns 2-17
2.7 Process Representation Terminologyc.oviiiiii ittt 2-17
2.7.1 Process REpresentationciiitiiienneeennneerenennnnanennns 2-18
2.7.2 Process Definitionsoinuiiiiiiiiii i i e i et 2-18
2.7.3 ProcessModels P 2-18
2.7.4 ProCesS EVENLS ... ouiniiiiiiiiiiiiiiiit it teirtaietaneeaiaaeas 2-18
2.74.1 Processoivinn ettt iiie ettt it e 2-19
2782 ACHIVIEY ..ottt ittt ittitttreettenareanatarenaaeaananas 2-20
g B T T PR 2-20
2.7.5 Process Throughputscciiiiiiiiiiiiiiiiiniienenieneneanenanns 2-20
2750 Products ..ottt ittt 2-21
2752 Research ..ot ittt i it ittt 2-21
2.7.6 Process SUPPOITS ... iuiniiniieieienniienearoenaosnsnecssorooasansens 2-21
2.7.6.1 ROIES .. oi ittt iiiiiiiiiiieeetsseasnnsosnnocensansoans 2-21
2.7.6.2 RESOUICES « .. vvvvniiininenreseeaseesosssnesnnssncesseonsnnnnns 2-21
277 Process CoNStraintscoovviiininnreiiierorereerecsennnsneseananons 2-21
2.7.7.1 Internal CONStraintscovvueieviinnnenenrerecerennnnnnoas 2-22
2.7.7.2 External CONStIaintsc.ovviiuereincioennenennnneeee oanuns 2-22
2.7.8 Process ANalysiscceevireiiinieinnrereninsnceinnciornnneanns 2-22
2779 Process Designvviiiiiiiiiiitiiiiiiiiiii it iiiiiiiiei s 2-22
2.7.30 ProcessInstantiationc.ciiiieiiiiiiiiiiiiiiiniiiiiiiaiennn 2-22
2.7.11 Project Process Modelottt 2-23
2.7.12 ProcesS ENactmentovuineuiiennnnneeroceroononnnnncceasennns 2-23
2.7.13 Process ABtOMAtIONo.uveineinieiiuinnereneoeeneronnsonneenncnns 2-23
2.7.14 Process Maturityocviiiiiiiiininnererenoneenennessnnonsanans 2-23
2.7.15 Process IMProvementc.uiuiniieinnesronnneeeenoneeenannannns 2-23
2.7.16 Process ASSELScuviintiiitiintiratiaettittiiie it iaeas 2-23

Contents

2.7.17 Process Asset Library it i e
2.7.18 Asset Granularityoiiiinnnniiieit ittt
2719 AssetInterfaceoiiiiiiiiiiiii i i e i e
2.7.20 Process Relationsooiviiiiiiiiiiiiiiiiiii it
2.7.20.1 Sequence Relationscoiiiiiiiiiiiiiiiii e
2.7.20.2 Inclusion Relationscooviiiiiiiiiiiiiiniiiiiiiiiiieenn,
2.7.20.3 Specialization Relationscoiiiiiiiiiiiiiiiia...
2.7.20.4 Reference Relationsc.oooviiiiiiiiiiiiiiiiiiiii

2.7.21 Asset Couplingand Cohesioncooiiiiiiiiiiiiii e,
2.7.22 Process ATChitecture oovvii ittt ittt ittt
2.7.23 Process NOtation ... oottt et iiteennnunrerteensannanssannnsannns
2.7.24 Degreesof Formalityooiiuiiiiiiiiiiii i,

3. PROCESS DEFINITION TEMPLATEScciicitiieencinnnnns ceeenn

3.1 Deriving Process Representation Templatesccooiiiiiiiiaiiiiat,
3.2 Template DefinitionandLayout.........c.coiiiiiiiiiiiiiiiiiiiiiiien.,
3.2.1 FoundationTemplateccoieiiiiiiiiniiiiiieiiiiiiiininnnnnnas
322 EventTemplatescoviiiiiiiiniiieeieniiiieerininenaneeeanans
3.2.2.1 Management Templatescooveiiiiietiiiiiiiarnnnannns

3.2.2.2 Production Templatescovueeiininiiinieeteiiinnnneereannns

3.2.3 Throughput Templatescooieeniiieienriiinnrainisnenannnns
3231 Product Templatesoovvvinniiiiiiiiiiii e e

3232 ResearchTemplatesccoiiiiiiiiiiiiiiiiiiiiiiiiiinanenn,

3.2.4 Support TEmMPIatescoouvviineinnirinennriineneeiinnrennnannns
3241 RoleTemplatesccoivviniiiiiiinniiinietniineenineennnnna.

3.24.2 ResourceTemplatescoovviiiiiiiiiiieiiiiiiiinenennn.

3.2.5 Constraint Templatesc.ouoviiurieiiiiieiiiniiiineiinraneennnns
3.2.5.1 External Constraints Templatescoiiiiiiiiiiainne,

Conlents

3.2.5.2 Internal Constraint Templatescoiiiieinnn.

3.3 Templates and Graphical Modelso,

4, TEMPLATE USAGEctiittiiiieitintnrennenosessnnnessonanns

4.1 Process Guidebooks ..ottt i i e
42 Process Models . ..ot i i e e
4.2.1 Process Layerscoviiiiieniiiiiieetiiiertiiietianineaannns

4.3 Representative POWErcoiiiiiiiiiiiiiiiiiiiniiiiiiiiiiieians
43.1 Granularitycoiiiiiiiiiiiiiiiiiiii it i
432 Practicalityccoviiiiiiiiniiiiiiii ittt
433 Redundancycoviiriiiiiiiiiiiii ittt
4.3.4 Modularity and InformationHiding

4.4 Template Usage Scenariooieiiiitiiiiiienineiirnneneanannn
4.4.1 Activity One: Define Event Relationshipso.Ls.
4.4.1.1 Task 1: Build an Indented List of Events

4.4.1.2 Task 2: Build a High-Level Graphical Model of Events

4.4.1.3 Task 3: Establish a Template for Each Event on the Indented List

4.4.1.4 Task 4: Identify Event Abstractionscovvveevnnnn.
4.4.1.5 Task 5: For Each Nontask Event, List All Additional States
4.4.1.6 Task 6: Describe Internal Processingceoennn.
4.4.1.7 Task 7: Describe Event State Transitions
4.4.1.8 Task 8: Define Entry and Exit Criteria
4.4.2 Activity Two: Define Event Throughputso ...
4.4.2.1 Task 1: Build an Indented List of Throughputs

.....

.....

.....

.....

.....

ooooo

.....

ooooo

ooooo

ooooo

.....

aaaaa

4.4.2.2 Task 2: Extend the Graphical Event Model to Include Throughputs ...

4.4.2.3 Task 3: Establish a Template for Each Throughput
4.4.2.4 Task 4: Identify Throughput Abstractions

4.4.2.5 Task 5: Identify Any Additional Throughput Item-Specific States

3-39
3-42

4-1
44
4-4
4-6
4-6
47
47
4-8
4-8
49
49
49

4-10

4-10

4-10

4-10

411

411

4-11

4-12

4-12

412

4-13

4-13

vii

Contents

4.4.2.6 Task 6: For Each Event, List All Throughputs
4.4.2.7 Task 7: For Each Throughput, List All Contributing Events
4.4.2.8 Task 8: Define Throughput State Transitions

4.4.2.9 Task 9: Update Internal Event Flow to Include Throughput::State
Referencescovviiiiiiiiiiiii i i ittt

4.42.10 Task 10: Update Entry and Exit Criteria to Include Throughput::State
3 2 £ 11O

4.4.3 Activity Three: Define Event Supportscooiiiiiiiiiiiiiinnn.
4.43.1 Task 1: Build an Indented List of Supports
4.4.3.2 Task 2: Extend the Graphical Model to Include Supports
4.4.3.3 Task 3: Establish a Template for Each Support on the Indented List ...
4.4.3.4 Task 4: Identify Support Abstractionsc..oeiiieiinnnnn
4.4.3.5 Task 5: Identify Any Additional Support States
4.4.3.6 Task 6: For Each Event, List All Needed Supports
4.4.3.7 Task 7: For Each Support, List All Supported Events

4.4.3.8 Task 8: Update Internal Processing Fields to Include Support::State
0 o - 11

4.4.3.9 Task 9: Update Entry and Exit Conditions to Include Support::State
REfErencescovviieiiniiiieiiiiiieeeneereniseeasasnasnenans

4.4.4 Activity Four: Define External Event Constraints
4.44.1 Task 1: Build an Indented List of External Constraints
4.4.4.2 Task 2: Extend the Graphical Model to Include External Constraints ..

4.4.4.3 Task 3: Establish a Template for Each External Constraint on the
Indented Listcovvnninnnnnniiiiiiiiiiii it

4.4.4.4 Task 4: Identify External Constraint Abstractions
4.44.5 Task 5: Define Additional States for Each External Constraint
4.4.4.6 Task 6: For Each Event, Note All Applicable External Constraints
4.4.4.7 Task 7: For Each External Constraint, Note All Applicable Events

4.4.4.8 Task 8: For All Events, Update Internal Processing to Include
External_Constraint::State Referencescovvveennn.

415
4-16
4-16
416

viil

Contents

4.4.4.9 Task 9: For All Events, Update Entry and Exit Conditions to Include

External_Constraint::State References oL, 4-17

4.4.5 Activity Five: Define Internal Event Constraints (Permission Classes) 4-17

4.4.5.1 Task 1: Build an Indented List of Internal Permission Constraints 4-17

4.4.5.2 Task 2: Update the Graphical Model With Internal Constraints 4-18
4.4.5.3 Task 3: Establish a Template for Each Permission Class on the

IndentedListovvineiiiiiiiiiii i e 4-18

4.4.5.4 Task 4: Identify Permission Class Abstractions 4-18

4.4.5.5 Task 5: For Each Role, Note All Applicable Permission Classes 4-18

4.4.5.6 Task 6: For Each Internal Constraint Class, List Associated Roles 4-18

4.4.5.7 Task 7: For Each Event, Update Internal Processing to Reference
ROIE:PErmissionooiiivvneneiiiiniiiiiiiienenn.. 4-18

4.4.5.8 Task 8: For Each Event, Update Entry and Exit Conditions to

Reference Role::Permission::Stateccoiiaaae. 4-18

4.4.6 Activity Six: Simplify/Clarify Template Contentscoun.. 4-19
447 Activity Seven: Generate Alternative/Optimized Process Model 4-19

4.5 Improving Template Usabilitycooiiiiiiiiiiiiiiiiiiiieninn.. 4-19
4.5.1 Improving Data Presentationc.cviiiiiiiiiiiiiiniiinnne. 4-19
4.5.2 Improving and Tailoring the Templatescoiviiiiiinen.n, 4-21

4.6 Using Templates to Facilitate Process Improvementc.convn... 4-22
4.6.1 Process Improvement Via Increased Process Maturity 4-22
s 0 T 7 I 4-23

L B 7 4-23

4613 Leveld .o i e i 4-23

4.6.1.4 SUMMATY . ..0tuninitiinnnnnreoeeeeeneeseeooteenannronsanonans 4-24

4.6.2 Process Improvement Via Reduced Coupling and Increased Cohesion 4-24
463 Incremental Changecciiiiiinetiiiiiiiiiieiiinesnnseennnnns 4-26

5. ALTERNATIVE PROCESS REPRESENTATIONS cereenanns ces 5-1
5.1 Process Objects and Relationshipsooiiiiiiiiiiiiiiiiiiiiiann., 51

Contents

5.1.1 Template Meta-Modelooiiiiiiiiiii i 52
5.12 Reference Relationsoo ittt 5-2
5.1.3 Specialization Relationsccoiiiiiiiiiiiiiiii 5-4
5.1.4 Sequence and Inclusion Relationsl 5-5
5.2 Alternative Representations e a e 5-6
5.2.1 State Transition Diagramscoviiiiiiiiiiiiiiieiiiiinnaanens 5-6
5.2.2 Entry-Task-Validation-Exitcooouiiinieiiiinnniiniinainen, 5-7
5.2.3 Structured Analysis and Design Techniques 5-10
524 Statechartsiiiiiiiiiiitt i it i s 5-12
5.2.5 PetriNEtsoni ittt iiiitat ittt 5-17
5.2.6 Process and Artifact State Transition Abstraction 5-19
5.2.6.1 Structure of Formal Generic Process Model 5-20
5.2.6.2 Artifactsand Their Statescoiiiiiiiiiiiiiiiiiiii 5-20
52.6.3 Process Stateccueieneiiirannnnrannittineaineatieeannns 5-21

5.2.6.4 Translating From Process Templates to Process and Artifact State
Transition Abstractioncccoiiiiiiiiiiiiiiiiiiiiiiin... 5-21
5.2.7 Role InteractionNets et etereet et 5-23
53 SUMMAIY ...ttt ittt iiiiitinetereteronnnseeesonsontoeneenennnes. 5-25
6. PROCESS REPRESENTATION PROGRAMSccciniitecnnneiinnnnens 6-1
6.1 Introducing Process Definition and Modeling Into an Organization 6-1
6.1.1 MOUVAtIONovittttiii ittt et iieiteeriaietiiiieeeannnann 6-2
6.1.2 Process Definition and Modeling Staffcooiiiiiiitt. 6-3
6.13 Getting Startedouiiretiiiriiiiiiitiiiit it i 6-3
6.1.4 Ongoing Improvements in Process Representation 6-4
I (5 T PR 6-5
6.2.1 Important Characteristicsccviiuieeriviiineneiiiiiinnnennn, 6-5
6.2.2 Metric Support for Process Tracking and Cost Modeling 6-6

Contents

6.3 Representing The Evolutionary Spiral Process
6.3.1 The First Quadrant: Define Approach
6.3.2 The Second Quadrant: Aaalyze and Avert Risk
6.3.3 The Third Quadrant: Develop Product
6.3.4 The Fourth Quadrant: Manage and Plan
6.3.5 Evolutionary Spiral Process and Dynamic Process Improvement

6.4 Manual Process Managementccoiviiiuiiiniiinnniniiiannecnnnenns
6.4.1 Process Checklist™ ... oiiiiiriiiiiiiiiiiii i it
6.4.2 Electronic Mail-Based Processco.viiiiiiiriiiiiiiniiinnn..

6.5 Automated Process Management Via Integrated Environments

6.6 SUMIMAIY .. .ovttttiitiitttanunnneeeeeesaneeaeeeesannsanseresoaeacnnns

8 S 0= 7 (3 U
T2 FUUTE WOTK .ottt ettt ettt eanananneraeanennnnnns
APPENDIX A. EXAMPLE TEMPLATE USAGE
A.1 Definition and Modeling Approacho,
A.2 Formal Inspection Process Exampleooiiiiiiiiiiiiiiiiiiiiaat,

A3 Template Usageoouiirieieiiiniiiiieeninnnonenniesneneannnns

................

...............................

.................................

.........................

................................

...............................

APPENDIX B. ETVXEXAMPLEcccce0t tinvtercnnrocccnecncsnsennnns

B.1 Approaches...................... R R R R LR TP PR DD

B.2 ETVX Presentation of Inspection Process

APPENDIX C. SADT EXAMPLE OF SWAT PROCESS
C.1 SADTExamplecovvienennnnn.. et eeeaeieee ettt

..................................

......................

APPENDIX D. STATE TRANSITION DIAGRAMS sonenns seesnsncnnes

GLOSSARY

REFERENCESccitiiiiieienecennanens cececcesententsasnes Ceereane

BIBLIOGRAPHYco00vvennieccncnns

ooooooo

A3

B-2
B-3
C-1
C-2
D-1
Glo-1
Ref-1
Bib-1

Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.

FIGURES

Guidebook Organization View 1

.....................................

.....................................

Guidebook Organization View 2
Entry-Task-Validation-Exit Diagramc.ooviiiiiiiiian.,
Structured Analysis and Design Technique Diagram
Statechart Example 1 ...
Petri-Type Net .. .ot it it i ittt ittt
EVENt SITUCIUTE . oo ittt it ittt iiiieieiieneasanecneneaaeennnaens
Event Structure View1 oottt
EventStructure VIEW2 ... iiiiiiiiiiiiiiiii ittt
Guidebook Organization View3cciiiiiiiiiiiiiiiiiiiinnnn,
Process Model Construction—Level1...........c.coiiiiiiiiiiinnn.,
Process Model Construction—Level2................ccviieiniinnnn..
Process Model Construction—Level3...............oiiiiiiiiii ot
Process Model Construction—Level4...................ooiiiiiiiiiee,
Process Model Construction—Level 5.............ccooiiiiiiiiin e,
Meta-Class Templatesccooiiiiiiiiiiiiiiiiiiiiiiiieennnn.,
ClassTemplatescoiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiennaiennn
Template Structure (Generic)ooveviieiiiiiiii ittt
Template Structure (Generic)covvvviiiiiieiiiiiiiiiiieiinnenn.
FoundationTemplateccviiiiiiiiiiiiiiii i,
Template Structure (Generic) ..ot

EventTemplatettt e

1-5

27
27
2-8

Figures

Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.

Figure 3-24.

Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29,
Figure 3-30.
Figure 3-31.
Figure 3-32.
Figure 3-33.
Figure 3-34.
Figure 3-35.
Figure 3-36.
Figure 3-37.
Figure 3-38.
Figure 3-39.
Figure 3-40.

Template Structure (Generic)ooveiiiii it 3-15
Management Templateo i 3-16
Template Structure (Generic)ooviiiiiiiii i, 3-17
ProductionTemplateccoouiiiiiniiiiiiiiiiiiiiiiiee 3-18
Template Structure (Generic)oooiiiiiiiiiiiiiiiiiiiiiii i, 3-19
Throughput Templatecovieviiiiiii it e i anee, 3-20
Template Structure (Generic)ocoviiiiiiiiiiiiiiiii i 3-22
Product Templatec.oonnuiiiiiiii it it 3-23
Template Structure (Generic)oviviiiiiiiiiiiiiiiiiiiiiina, 3-24
ResearchTemplatecoouiiiiiiiiiiiiiiiiiiiiiiiiiieieie e, 3-25
Template Structure (Generic)coviiii i, 3-26
Support Templateoviinnii it i i it e e e 3-27
Template Structure (Generic)ooviviiiiiiiiiiiiiiiiennne.. 3-29
RoleTemplateoovinniiiiiiiiiiiii ittt iitienesnannseennns 3-30
Template Structure (Generic)c.ooviiiiiiiiniiiiiiieiiiieneinn. 331
ResourceTemplatecovniiieiiiii it iiiiiiiiiiinenn 3-32
Template Structure (Generic)ovvveiviiiiiiiiiiiiiiiiiian., 3-33
Constraint Templateoieriiiiiiiiiiiiieiiinieiiiaeenseannnns 3-34
Template Structure (Generic)c.covviriiiiiiiiiiiiiiiiiiiiienn, 3-36
External Constraint Templatecoiiiiiiiiiiiiiiiiienannn.. 3-37
Template Structure (Generic) «.......cooveeiiniiiiierieneinnranennen 3-39
Internal Constraint Templateccoviiiiiiiiiiiiiiiiinnienen. 340
Process Object Modeling Shapescoviiiiiiiiiiiiiiiiennnn.. 342
Process Relationship Modeling Shapescooviiiiiiieae.n. 342
R e) 3-44
L e 57 345
SWAT—D3 ...ttt ittt e e i 347

xiti

Figures

Figure 3-41.
Figure 3-42.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.

Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.

7 e - 3-48
RN e T - O 3-49
Guidebook Organization Viewdciiiiiiiiiiiiiiiiiinen... 4-1
Environment Based Process Management Concept 4-3
Process Definition Layersooceviiiiiiiiiiiiiiiiininnnan. 4-5
Guidebook Organization View Scociiiiiiiiiiiiiiiiiiiinnans 51
Reference Relations: View 1cooiiiiiiiiiiiiiiniiiiiiiinienenen 53
Reference Relation: View 2c.iiiiiiiiiiiiiiiiiiiiiiiiiin s 5-3
Addition of Specialization Relationsoooiiiiiiiait, 5-4
Addition of Sequence and Inclusion Relations 5-5
State Transition Diagram Relationsciiiiiiiaa... 5-7
Entry-Task-Validation-Exit Diagramcooiiieiiineniennnnn. 5-8
Entry-Task-Validation-Exit Relationsooooviiiiiiiii i, 5-10
Structured Analysis and Design Technique Diagram 5-10
Structured Analysis and Design Technique Example 1 5-11
Structured Analysis and Design Technique Example 2 5-12
Structured Analysis and Design Technique Relations 5-13
Statechart Example 1oiitniiiiiiiiiiiii ittt 5-14
Statechart Example 2coiitiiiiiiiiiiiiiiiiiiiiiiiieaniananses 5-15
Statechart Relationsooitiiiiiiiiiiiiiiiiiieninneeeninnnes 5-17
Petri-TYpe Net . . oottt ittt ittt ettt 5-18
PetriNet Relationscovutiiiiiiiiiieiiiieeeeiiinenennnnnaanns 5-19
Relationships Defining the DesignModelooiiat 5-20
P-State Diagram Exampleoiiiiiiiiiiiiiiiiiiiiiiiiiiiane, 5-22
Artifact Relation DiagramExampleccociiiiiiiiiinae.. 5-22
Process and Artifact State Transition Abstraction 5-23
RoleInteraction Netcoiiniiiiiiieeniieiiinineennnns 5-24

Figures

Figure 5-23.
Figure 5-24.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 7-1.
Figure A-1.
Figure A-2.
Figure A-3.
Figure A-4.
Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure B-6.
Figure B-7.
Figure B-8.
Figure B-9.
Figure B-10.
Figure B-11.
Figure B-12.

Role Interaction Net Templates

......................................

Role Interaction Net Relations ... cvvvittirrinet ettt ienrennsevenennes

Guidebook Organization View 6

.....................................

...............................

The Evolutionary Spiral Process Model
An Example Spiral

...

Define Approach Activitiesc.iiiiiiii ittt

Risk Analysis and Aversion Activities

..................................

--

Develop Product Activities
Manage and Plan Activitiesccoiieiiiiiiiiiiiiiiiiiiiiiieiia

Evolutionary Project-Level Process Engineering

........................

Guidebook Organization View 7

SWAT Inspection Process

SWAT Program Active

..

ooooooooooooooooooooooooooooooo

ooo

oooooooooooooooooooooooooooooooooooo

ETVX Diagram 1: SWAT

L R L I I I R R O N B A N A I I I S A A N A S I Ay

oooooooooooooooooooooooooooooooooo

ETVX Diagram 2: SWAT EA_INSP
ETVX Diagram 3: SWAT ET CAUSALccuvvvneinneennennnn.
ETVX Diagram 4: SWAT EA_PROC~IMP

ooooooooooooooooooooooooooo

ETVX Diagram 5: SW_ET_PREC—IMP_PRESENT
ETVX Diagram 6: SW_ET_PROC~IMP_RECOM

.....................

ETVX Diagram 7: SWAT ET_INSP_PLAN

...........................

ETVX Diagram 8: SWAT_ET_INSP_OVER

ETVX Diagram 9: SWAT ET INSP_PREPccceeuvnennnnnnnn.
ETVX Diagram 10: SWAT EA_INSP_I MTG

.........................

5-24

5-25

Figures

Figure B-13.
Figure B-14.
Figure B-15.
Figure B-16.
Figure B-17.
Figure B-18.
Figure B-19.

Figure C-1.
Figure C-2.
Figure C-3.
Figure C4.
Figure C-5.
Figure C-6.
Figure C-7.

Figure D-1.

ETVX Diagram 11: SWAT_ET_INSP REWORK B-8
ETVX Diagram 12: SWAT_ET INSP_ FOLLOWccccunn.. B-8
ETVX Diagram 13: SW_ET_INSP_I-MTG PURP..................... B-9
ETVX Diagram 14: SW_ET_INSP_I-MTG TLOG B-9
ETVX Diagram 15: SW_ET_INSP_ I-MTG_ INSP...................... B-10
ETVX Diagram 16: SW_ET_INSP_I-MTG _FIND B-iO
ETVX Diagram 17: SW_ET_INSP I-MTG REIN B-11
SADT DIagramcovviiiiiietenneoenasseaensoneesonnsaosuennans C1
Parent-Child Event Tree Structurecoiiiiiiiiiiiiinneenannn, C3
SADT Diagram 0: SWAToovtinuiiniiiiiiiiiiiiiiiiiianeeanenn. C3
SADT Diagram 1: SWAT inZoOomoutc.coovvriiiirenneeenennann. C4
SADT Diagram 2: SWAT EA PROC-IMPcocviiueinnen.. C4
SADT Diagram 3: SWAT EA INSPEccoiiiiiiiinnannnn, Cs
SADT Diagram 4: SWAT EA INSP I MTGccoiiiiviniiinnnnn. C-6
State Transition Diagramccciviiiiiiiiiiiiniieiieneneeeennas D-2

Table 2-1.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.

TABLES

Software Engineering Institute Process Maturity Level and the Problem Areas 2-4

A Basic Activity-Based Development Modelcocovviiieen..... 6-7
Worksheet Cost Calculations for an Activity-Based Model 6-9
AdaDevelopment Modelooveiiiiiinnrniniiiiiiiii i iiiiniaannas 6-10
Top-Down Cost Estimating Examplecccoiiiiiiiiiiinena.. 6-11

Tables

This page intentionally left blank.

xviti

ACKNOWLEDGEMENTS

The author of this guidebook was Richard Bechtold. The Consortium would like to thank Sue Rose,
Jim Kirby, Hal Pierson, and Dick Werling for their extensive reviews of the guidebook, and for their
contributions toward the technical content and editorial presentation of this material. The Consor-
tium likewise appreciates the technical contributions of Kevin Schaan, Dave Nettles, Greg Shea, John
Blyskal, and Kirsten Blakemore, and the research and contribution of Robert Lai who developed PASTA.

Acknowledgements

This page intentionally left blank.

1. INTRODUCTION

1.1 REQUEST FOR FEEDBACK

This guidebook is not intended to advance the state of the art. It does, however, use state of the art
principles as a means for advancing the state of the practice. The Consortium’s objective with this ver-
sion of the guidebook is to provide sufficient tools, techniques, guidelines, and examples to enable you
to acquire the necessary understanding and skills to capably perform process representation. It must
be emphasized that a deliberate attempt has been made to stay with fundamental principles and
techniques that can be easily learned and readily applied.

The Consortium is actively interested in end-user reaction, case studies, feedback, and any suggestions
or recommendations you have for improving and advancing the content of this guidebook. While in-
sights from researchers and technologists are also appreciated, this guidebook is designed to provide
information useful to process project managers, process line engineers, and others whose daily activi-
ties are consistently constrained by crowded schedules and tight budget considerations. It is from this
audience that the Consortium is especially interested in feedback.

Although this guidebook combines both theory and practice, the Consortium has consistently put the
emphasis on practical considerations and practical application. The Consortium encourages you to
apply the information presented herein, and strongly encourages you to let us know your thoughts on
how to make this information progressively more useful to others like yourself.

1.2 SUMMARY PURPOSE AND SCOPE

The purpose of this guidebook is to provide a tailorable approach for process definition and modeling
that an organization can use to accomplish process-related objectives. To achieve this purpose, this
guidebook provides a flexible set of templates and techniques for capturing and representing processes
and for representing the relationships and constraints between and within the artifacts, resources, and
activities comprising the processes. Additionally, this guidebook provides explanation on how the
templates and corresponding techniques can be used:

* As a common foundation for process analysis, design, development, and documentation.
s To facilitate the development of process-oriented guidebooks.

¢ To improve the usability of process-oriented guidebooks.

* D facilitate process training and education.

* To reduce the cost of develbping process-oriented guidebooks.

11

1. Introduction

‘e To create a defined process from a repeatable process.

* Tocreate arepeatable process from the analysis of independently successful process activities.
¢ D facilitate process management.

» To facilitate process measurement.

* To facilitate process improvement.

¢ To facilitate process automation.

* To design and develop process models.

* Asamigration path to and from process models based on existing notations (Structured Analysis
and Design Technique [SADT], Entry-Task-Validation-Exit [ETVX] paradigm, State Transition
Diagrams [STDs], etc.).

Although there are many aspects to the development, analysis, maintenance, and application of
process representation, this guidebook limits its scope to the construction of process representations
and their interpretation to gain process insights that facilitate the above uses. Asindicated above, this
guidebook provides introductory material on the conversion of template-based representations to
other notations, and then briefly evaluates the relative advantages and disadvantages of these
alternative notations with regard to process modeling. The notations discussed include:

* ETVX

o SADT
e STDs
e Petri nets

e Statecharts
¢ Process and Artifact State Transition Abstraction (PASTA)
¢ Role Interaction Nets

This guidebook includes several examples (in the appendixes) that illustrate a variety of approaches
for constructing process models using different process notations.

One eventual goal of process definition and modeling is to construct models which are formal enough
that they enable a process to be, literally, executed in an integrated, automated environment. This
would also directly support project management activities through the development of project plans
derived from the instantiation of one or more process models. Although this long-range objective is
beyond the immediate scope of this guidebook, relevant issues are discussed and both manual and
semi-automated alternatives to model-supported project management are presented.

1.3 MOTIVATION

An organization can be characterized by the resources it requires, the products it produces, and the
processes it uses. Successful organizations typically become so through improvements in resource

1. Introduction

usage, product quality, and process efficiency. Organizations are increasingly recognizing the fact that
the quality of a product is a direct reflection of the quality of the process that createsit. The challenge
has been, and will continue to be, for organizations to understand their processes and the effects of
those processes on product quality and resource allocation. Consequently, the primary purpose of this
guidebook is to provide you with guidance on how to describe your organization’s processes.

Although improved quality, efficiency, productivity, moral, and profitability all depend extensivelyon
process quality, the means for communicating about, analyzing, and improving organizational pro-
cesses are often inconsistent or nonexistent within many organizations. Whether an organization
wants to improve its process depends upon that organization’s decision makers. However, once the
decision is made to improve process quality, an organization still needs tools and techniques for per-
forming the work. Therefore, another primary objective of this guidebook is to provide you with a set
of tools and techniques that can be used to improve process analysis and communication, and thereby
facilitate organizational process improvement.

Consequently, a key question forming the development of this guidebook was, “What is the best
approach for communicating knowledge about an organization’s processes and the practices and acti-
vities of which those processes are built?” The communication of knowledge traditionally takes one
or both of two major forms: words and pictures. Words have the advantage of formality and precision,
but the disadvantage of restricting you to serial communication. Pictures have the advantage of simul-
taneously communicating several related concepts and principles, but have the disadvantage of being
too easily misinterpreted or misunderstood.

To improve communication, there needs to be a way of using both words and pic.ures to represent
processes. This guidebook proposes an approach that strives to combine the best of both; however,
toimprove communication it is important to have a common understanding of terms. In the following
material (and throughout the guidebook) process definition is considered to be the act of representing
the important characteristics of a process in a way that facilitates understanding and communication.
Process modeling both extends and constrains process definition by requiring the process model to
adhere to a predefined set of objects, relationships, methods, and structural conventions. Process rep-
resentation is a general term that refers to the combined or sequential efforts of jointly performing
process definition and process modeling. From this perspective, your challenge becomes how to best
represent your organization’s processes via some combination of process definition and process
modeling techniques.

1.4 GOAL-DRIVEN PROCESS REPRESENTATION

Process representation spans the entire effort spectrum from exceedingly easy to exceedingly difficult
as a function of process complexity and desired level of detail. Before an organization undertakes pro-
cess definition and modeling, it needs to clearly define the specific objectives that it expects. If the goal
is to analyze the representation for process bottlenecks, this will influence the type of model that
should be constructed. If the goal is to identify and remove process redundancy, to remove areas where
the process remains largely undefined, or to seek insights into process risk, all these considerations
influence not only the type of definition or model constructed but also the approach taken in researching
and constructing those representations.

You should note that the magnitude of your goals must be directly related to the magnitude of
organizational support for process representation. If the organization can only nominally support a

1.3

1. Introduction

process representation effort, the goals that you strive for must be kept realistically and correspondingly
small. Conversely, if an organization is prepared to give considerable support, then the goals of your
process representation effort can be proportionately larger.

The key point is that it is important to allow your goals to drive your process representation effort.
Initially, you may find that relatively simple diagrams of isolated parts of your process are sufficient
to achieve your immediate goals. Later, you may find that you can achieve additional goals by extend-
ing your existing representation, adding more detail, and maybe capturing primary interrelationships
between your growing inventory of “process asset” models. Still later, other goals may be achieved
through even further expansion of scope, detail, abstraction, and information. It is important to note
that this guidebook, and the tools and techniques it proposes, have been designed to facilitate precisely
this type of goal-driven, incremental approach to process definition and representation.

The Consortium believes that it is important for organizations to have a modeling option which
attempts to combine the strengths of text- and graphic-based representations while minimizing their
respective weaknesses. The templates and associated graphical conventions described in this guide-
book are specifically designed to support process representation, including both process definition
and process modeling. The templates have fields for text-oriented descriptions of activities, pre- and
post-conditions, internal processing, comments, and revision history. However, through a variety of
relationships they also convey an explicit architecture directly supporting graphical rendering and
analysis. It is believed that this combined template- and graphically-based approach provides you
greater opportunity for the optimal combination of both text and diagrams toward the cost-effective
development and use of process representations.

1.5 THE NEED TO MOVE TOWARD MODELS

Existing examples of process representations include policy, procedure, and operational manuals
developed by organizations to inform and guide their employees in the performance of their responsi-
bilities. Most organizational process guidebooks only define the process, and few make use of process
models. Those that do, often use relatively high-level or simple models. Although process modeling
is a comparatively rare technique for representing organizational processes, it is a well-known and ma-
ture technique for representing processes implemented by computer systems. Examples include
Statecharts, SADTS, and the ETVX paradigm.

Due to fundamental parallels between defining and modeling organizational processes and computer
processes, many techniques from computer process representation can be applied to organizational
process representation. Similarly, many of the advantages and benefits derived by building computer
process representations can also be derived from organizational process representations. As high-
lighted below and elaborated throughout the remainder of this guidebook, the Consortium believes
that an organization can achieve significant benefits through the proper use of both process definition
and process modeling techniques.

Science and industry have long recognized the value of models. A model enables you to gain detailed
insights into important, and sometimes crucial, characteristics of whatever is being modeled. The risks
of building flawed models are usually less than the risks of proceeding with flawed plans, products,
or practices. The costs of recovering from the flaws, correcting the problems, and eventually achieving
an acceptable model are significantly less than attempting such efforts on something already in pro-
duction or in practice. Additionally, following something that is well defined is far preferable—and

14

1. Introduction

far more successful—than attempting to follow or adhere to something which is poorly defined or not
defined at all.

This is where models are especially useful. Models can communicate key component objects and
organizational relationships, highlight key aspects of the process, and abstract out information not
crucial for the perspective being presented. In practice, however, even process models have proven
to be difficult to develop and maintain, especially for large-scale processes. Modeling notations (such
at SADT, Petri nets, and Statecharts) have traditionally been used to represent processes occurring
within a computer. These same notations can be used with greater or lesser degrees of success for
constructing corporate or organizational process models. However, due to the inherent volatility of
organizational processes (based in large part on the need to respond progressively faster to market
forces) even these models can be inadequate and of questionable value. As with documentation, the
model must reflect reality. If reality advances but the model (or documentation) does not, its relevancy
and its value drop drastically.

This guidebook presents a combination of tools and techniques for leveraging the best that is offered
by process definitions and models while minimizing their less advantageous characteristics. This tem-
plate-based approach can be used for both defining and modeling a process. These templates can be
used, for instance, to succinctly capture organizational process policies, procedures, and operational
guidelines. Additionally, by using the graphical conventions provided in Section 3.3, you can use them
to construct graphical process models.

Since processes and objectives can vary greatly between different organizations, the template-based
process representation technique presented in this guidebook is specifically designed for flexibility
and tailorability. Guidelines are presented in Section 4 for modifying this process representation tech-
nique to accommodate site-specific objectives and to facilitate site-specific, cost-effective
implementation and application.

1.6 GUIDEBOOK ORGANIZATION

Figure 1-1 shows the guidebook’s organization and the possible paths you can follow.

- [

® @ ©
Templates T%nszlate PrEogramE 2) [°I

¢)]) \
Overview and Alternate \
Foundation ; \
v J, l v
O]
Summary

Figure 1-1. Guidebook Organization View 1

1.5

1. Introduction

Outlined below is a summary of information presented throughout the remainder of this guidebook:

Section 2, Overview and Fundamental Concepts, provides an overview of the value of and
techniques for process definition and modeling. Section 2 starts with a brief discussion on the
need for representing processes. Section 2.2 provides an overview of defined processes and
process maturity. Section 2.3 provides a brief introduction to alternative process modeling
notations, and Section 2.4 examines common characteristics in process representation. Sec-
tion 2.5 discusses how you choose a process representation notation as a function of compara-
tive analysis of key characteristics with regard to your specific environment and goals. Next,
in Section 2.6, there is a brief examination of the benefits to using the template-based ap-
proach presented in this guidebook. Section 2 concludes with a basic introduction to key con-
cepts, terms, and definitions relevant to the domain of process representation. As shown in
the diagram, after Section 2 the casual reader may want to directly go to Section 7.

Section 3, Process Definition Templates, provides:
— The rationale behind the selection and use of this particular set of process templates.
— The process templates and discusses how they can be used (Section 3.2).

— The graphical extensions used to diagrammatically depict template-based process
descriptions and example process diagrams highlighting a variety of graphical characteristics
and advantages (Section 3.3).

Section 4, Template Usage, examines using templates to facilitate the development and analysis
of process guidebooks and it expands upon the domain of use and applicability by discussing spe-
cific characteristics of process models. Section 4.3 examines process models from the key per-
spective of representative power. Section 4.4 changes to a practical orientation, and develops
adetailed examination of a suggested approach for using templates to construct both text and
graphic-based process models. Section 4.5 discusses how you can improve the usability of tem-
plate-based process models both by improving data presentation and by modifying or tailoring
the templates to site-specific needs. Section 4 closes by examining how you can potentially use the
templates to facilitate organizational process improvement. As is shown in the diagram, it is sug-
gested that if Section 4 is read, Section 5 should likewise be read (before jumping to Section 7).

Section 5, Alternative Process Notations, commences with a discussion on process objects and
relationships which bind those objects. A process meta-model is constructed to highlight pro-
cess objects represented by the templates, and legal relationships between those objects (Sec-
tion 5.1). Section 5.2 examines various opportunities and techniques for supplementing
template-based representations with other notations, and vice-versa. ETVX, SADT, State-
charts, Petri nets, PASTA, and Role Interaction Nets are each described and evaluated.

Section 6, Process Representation Programs, discusses issues, approaches, and options
relevant to commencing and continuing a program for process representation. Section 6.1
presents material on introducing process definition and modeling into your organization. Sec-
tion 6.2 introduces the subject of metrics and discusses how process definition can support a
program of process and product measurement. Section 6.3 provides an overview description
of the Evolutionary Spiral Process from the perspective of process representation. Section 6.4
discusses the use of process representation as a tool for process management, and Section 6.5

1-6

1. Introduction

looks beyond conventional process management approaches and discusses the support
process representation gives to automated process management within highly integrated
environments. Section 6.6 provides a brief summary of this material.

e Section 7, Summary, briefly highlights the key principles in the guidebook, and presents a
summary of future work planned to appear in the next release of this guidebook.

1.7 INTENDED AUDIENCE

The primary intended audience for this guidebook is practitioners interested in the tangible benefit
derived from using process representation tools and applying process representation techniques. This
audience includes line engineers, project managers, and anyone working on or interested in the area
of process analysis, design, development, or improvement. Itis assumed that most readers are notnec-
essarily familiar with the theoretical issues and aspects of process representation; therefore,
motivation and rationale are considered important and are provided throughout the guidebook.

1.8 TYPOGRAPHIC CONVENTIONS

This report uses the following typographic conventions:

Seriffont...........c..ooiil General presentation of information.

halicized seriffont Words, expressions, abbreviations, and acronyms found in
the Glossary, mathematical expressions, and publication
titles.

Boldfaced seriffont Section headings and emphasis.

1-7

1. Introduction

This page intentionally left blank.

18

2. OVERVIEW AND FUNDAMENTAL CONCEPTS

This section provides an introduction to the fundamental concepts of process representation as they
relate to process definition and modeling. This section discusses: '

¢ Motivation for process representation.

* The rclationship between process representation and process maturity.

* Alternative techniques for process representation.

* Characteristics for comparing alternative approaches for process representations.
» Considerations when choosing an approach to process representation.

s Benefits of the template-based approach prbposcd in this guidebook.

¢ Anoverview of process-related terminology. |

As you can see in Figure 2-1, after completing this section you may elect to skip Sections 3 through
6 and complete your review of this material by reading Section 7. This approach provides the essentials
needed to discuss and understand the key concepts of process definition and modeling. For a more
in-depth understanding, continue with Section 3.

] 3
. ; @ © I
In 6Y) on Tem(pl)ates -—j{ Tetljnsglzte —)LI'IZrua}mtxon

3

©)

Alternate

\
1 1 AV
l l 1\
v vy A
@) Appendices
Summary I —Examples—

Figure 2-1. Guidebook Organization View 2

2.1 THE NEED FOR REPRESENTING PROCESSES
Process representations satisfy four key needs:
* To do successful work.

* To preserve lessons learned.

24

2. Overview and Fundamental Concepts

e To facilitate training.

¢ To analyze and compare existing and proposed processes.

2.1.1 Do SuccessruL WORK

An organization needs the ability to repetitively and consistently do successful work. Not only is it
necessary for one division or group to successfully do their work repeatedly, but it may also be impor-
tant for multiple divisions or groups to simultaneously perform the same type of work in the same way.
Having a defined process directly supports having a repeatable process. Although work may be suc-
cessfully repeated in the absence of a defined process, such repetition depends entirely on the efforts
of individuals. Conversely, once a process is defined it can become institutionalized and preserved by
the organization as part of its corporate legacy.

2.1.2 PRESERVE LESSONS

Another key advantage to representing a process is the preservation of lessons learned and insights
gained from the performance of that process. Typically, processes evolve. People involved in either
managing or participating within the process often find a variety of ways in which to improve how they
perform their work. Unless a process is defined, there is an increased risk that as individuals move
to work in other areas, their process improvement insights move with them. By having a representa-
tion of a process and by updating that representation to reflect process improvements the insights and
lessons learned through the actual performance of a process are preserved as part of the corporate

legacy.
2.1.3 TRAINING

Another key use of process representations is to facilitate training. Explaining to new employees the
process they should follow is one means of educating them, but the results can be inconsistent and,
in manyways, unpredictable. Training employees in their respective processes improves the likelihood
that they understand the key characteristics of the process they should be following, which can more
quickly lead to higher employee productivity and efficiency. Note that it is not the process representation
itself that yields these benefits, but the training opportunities that result from having a representation of
the process.

2.1.4 ANALYZE AND COMPARE

Finally, one of the most important key uses of process representation is to facilitate the analysis and
comparison of both existing and proposed processes. In the absence of process representations, de-
tailed analysis of existing or proposed processes is difficult, if not impossible. All discussion on the
process would be based on individual experience and opinion. Typically, there needs to be a consensus
on what the process is before the focus can be turned to how the process can be improved. Without
a process representation, valuable time and energy are lost while analysts attempt to reach agreement
on their differing conceptual impressions of the process. By defining and potentially modeling a pro-
cess, the key characteristics of the process are communicated more consistently and less ambiguously.
This tends to minimize confusion about what the process is and frees the process analysts to focus upon
how to analyze and improve that process.

22

2. Overview and Fundamental Concepts

2.2 DEFINED PROCESSES AND PROCESS MATURITY

Process improvement is now commonly considered to be a function of increasing process maturity.
Process maturity, especially the software engineering process, is an area of extensive research at the
Software Engineering Institute (SEI) at Carnegie Mellon. One of the cornerstones of the SEI software
process maturity model is that software process maturity can be evaluated in terms of the following
five levels (Humphrey 1990):

Initial
Repeatable
Defined
Managed

Optimizing

An organization can gain insights into its process and its opportunities for process improvement by
evaluating its process maturity.

Initial Level. The lowest level of process maturity is reflected by initial or ad hoc processes. At
thislevel, processes are generally chaotic. They are essentially ad hoc processes characterized .
by managers that react to situations as opposed to managers who attempt to direct situations.
Successful projects within this type of environment typically owe their success entirely to the
efforts of individual people—people who succeed in spite of the process, not because of it. Key
problem areas which, if addressed, can facilitate the processes’ advance to the next level of
maturity include efforts to improve project management and planning, configuration
management, and initial steps toward software quality assurance.

Repeatable Level. The next higher level of process maturity is characterized by repeatable
processes. Repeatable processes typically include project plans, sizing and estimation mea-
sures, productivity factors, scheduling and project tracking, planning models, software config-
uration management, and quality assurance efforts. However, processes at this level still
depend extensively on the efforts of individuals, and people are sometimes successful only be-
cause they intuitively understand the problem domain, and not because of any special process
or management support. Key areas of improvement include training, increased use of techni-
cal quality evaluation practices (such as reviews, walkthroughs, inspections, etc.) and an
increased focus on the process itself.

Defined Level. Defined processes are characterized by software standards and guidelines,
software inspections and reviews, and more formalized testing (including test plans, test sup-
port tools, and methodologies). At this level, there are one or more ongoing software engi-
neering process groups that work together to consistently improve the quality and maturity of
the processes in use. Areas for improvement include process measurement, process analysis,
and quantitative quality plans.

Managed Level. The managed process is characterized by process data gathering, especially by
management’s response to insights derived from the analysis of such data. To be useful, the
data must contribute to one of the four following areas:

2. Overview and Fundamental Concepts

— Understanding

Evaluation (compliance with criteria)

Control

— Prediction

Also critical to this level is the application of the collected data to such areas as quality motivation,
quality estimation, quality goals, quality plans, and general tracking and control of software
quality. Key areas where further process improvement efforts can be focused include changing
technology, problem analysis, and a special focus on problem or defect prevention.

s Optimizing Level. Finally, the optimizing level is generally characterized by efforts in which
improvement insights are directly translated into process changes. These changes include ef-
forts toward defect prevention, improved development environments, and an overall trend to-
ward automating the software process. Note that at this, the highest level of process maturity
as defined by SEI, process enactment, monitoring, and enforcement are still principally a hu-
man-intensive and largely manual process. Consequently, improvements at this level may be
achieved by relegating progressively greater process-oriented responsibilities to automatic
execution, analysis, and enforcement.

Using these levels of process maturity, summarized in Table 2-1, you can see that process representation
directly supports the second (repeatable) level of process maturity, and is critical at level three (de-
fined). Developing a repeatable process is directly facilitated by having a common definition of the
process to be repeated and by using that definition for training, reference, and as a guide to project
management. Having a repeatable process thathas been both defined and institutionalized is a corner-
stone to reaching and exceeding the third level of process maturity. Because each level of maturity above
the first level augments the practices of the preceding level, having a defined process remains crucial for
organizations seeking tc or manifesting process maturity at the fourth and fifth levels.

Table 2-1. Software Engineering Institute Process Maturity Level and the Problem Areas

Level Attributes Problem Area

(5) Optimizing Improvements fed back to process Automation

(4) Managed Quantitative — Measured process Changing technology
Problem analysis
Problem prevention

(3) Defined Qualitative — Institutionalized Process measurement
Process analysis
Quantitative quality plan

(2) Repeatable Intuitive — Depends on individuals Training
Technical practice
Process focus

(1) Initial Choice ~ Controls and plans ineffective Project management
Configuration management
Software quality assurance

Deciding to define (or represent) a process is only the first step. The next step is developing an
understanding of the various options, methods and alternative techniques available by which
processes can be represented.

2. Overview and Fundamental Concepls

2.3 ALTERNATIVE TECHNIQUES FOR PROCESS REPRESENTATION

The most common technique for representing or defining processes is the use of descriptive text.
Essentially, all operations manuals are text-based representations that describe one or more pro-
cesses. Organizational policy and procedure manuals are also potential sources of process descrip-
tions. One significant advantage to text-based descriptions is that there are virtually no constraints
placed on the description itself. Since the notation is the entire language of words, anything that can
be talked about, can be described. This, however, is also the most significant disadvantage to text-
based process descriptions Since there are no constraints (other than grammar) on the structure of
the description, there is the potential for considerable inconsistency, ambiguity, uncertainty, and
inaccuracy. Text-based descriptions are typically the least formal type of process representation.

Atthe other end of the formality spectrum is mathematics. Although mathematically provable process
models are an ideal goal, such methodologies are still an area of active research, and there are not
any clearly cost-effective and widely applicable math-based methodologies. However, between the in-
formality of descriptive text and the rigorous formality of mathematics, there are many options for
representing processes at varying degrees of formality.

Having graphical support to a notation can directly contribute to higher degrees of formality. Usually,
a graphically-oriented notation comes coupled with a methodology that imposes rules on placement,
use, and connections between the graphical objects. These rules constrain the types of structures that
can be built and increase the formality of the resulting depictions. Additionally, graphical depictions
are especially useful for portraying abstract or high-level relationships. The resulting diagrams allow
for insights into the process that can be virtually impossible to derive from descriptive text.

Fortunately, there are enough parallels between the need to represent human or organizational
processes and the need to represent software-based processes that many of the techniques and notations
developed for use in software engineering can be extended for use in general process representation.
From a software perspective, any software program can be written using five basic constructs:

» Sequence
¢ Selection
.® TIteration
e Dispatch

s Rendezvous

These are exactly the same constructs needed to represent organizational processes. Any type of process
can be represented if you have:

e Some means for indicating a series of events occurring in sequence.
e A sclection between two or more events.

¢ The repetitive execution of one or more events.

e The parallel initiation of two or more events.

¢ The synchronization of two or more events executing in parallel.

2-5

2. Overview and Fundamental Concepts

Examples of software-based techniques that can be used in general process modeling include STDs,
ETVX, SADT, Statecharts, and Petri nets. These and similar aiternative notations are examined in
detail in Section S and are only briefly introduced here.

2.3.1 STATE TRANSITION DIAGRAMS

STD:s are often used for describing finite automata (finite state machines). Any process that can be
described in terms of a finite automaton can be represented using an STD. Generally, a finite automa-
ton accepts some series of input symbols and typically produces some series of output symbols (Kol-
man and Busby 1984). Each such output symbol is a function of the relevant input symbol, the current
state of the automaton, or both. Additionally, as input symbols are received by the automaton, its state
may change. With regard to process modeling, input symbols and output symbols typically represent
events occurring in reality, and states within the machine represent different milestones or activities
within an overall process. Thus, finite state machines can be seen as one possible representation for
modeling sequences of events within some defined domain.

2.3.2 ENTRY-TASK-VALIDATION-EXIT

The premise behind the development of ETVX was the necessity to find a means of embedding methods
and tools into a common framework for intellectual and management control (Radice and Phillips
1988). ETVX (see Figure 2-2) is a quasi-diagrammaticrepresentation of IBM’s Programming Process
Architecture (PPA). The authors of ETVX take the position that PPA is the highest representation
of the software process; and that although it contains the necessary elements for representing software
engineering environments and activities, it also is applicable across a much more broad framework
(Radice and Phillips 1988). Therefore, it holds promise for use in general process definition and modeling.

2.3.3 STRUCTURED ANALYSIS AND DESIGN TECHNIQUE

When applying the SADT to software systems, the overall approach consists of identifying activities
then identifying the inputs and outputs of those activities, identifying factors that constrain the activities,
and identifying resources or materials that support the activitics (Marca and McGowan 1988).

As Figure 2-3 depicts, activities are represented diagrammatically as boxes. Inputs to an activity are
labeled arrows arriving at the left side of the box. Outputs from an activity are labeled arrows departing
from the right side of the box. Constraining influences are 1abeled arrows arriving at the top of the box,
and enabling mechanisms are labeled arrows arriving at the bottom of the box. This approach hasboth
a simple methodology and a clear graphical convention. Consequently, process definition and modeling
can readily be based upon SADT.

2.3.4 STATECHARTS

Statecharts are an extension of the basic notation used for finite state machines. Statecharts allow a
finite automaton to be decomposed into a representation which models two or more interacting or
communicating subsystems. Statecharts also support hierarchical decomposition of transition dia-
grams so that various levels of abstraction can be independently represented (Sanden 1992b). Figure
2-4 shows an example of Statecharts adapted from Marc Kellner’s SEI technical report (Kellner 1989).
The top portion of this diagram represents a functional perspective of a process while the bottom portion
represents a behavioral perspective.

2-6

2. Overview and Fundamental Concepts

Product Inputs Product Outputs

]

Pr Inputs In-Process Monitoring:

| * Measurement

y Process Outputs
* Quality Assurance
* Verification
* Validation (optional)
* Risk Assessment (optional)
Product Product Risk
Quality Completeness
:_- :_: Controlled by Activity Management Modified ETVX Paradigm
| | Instantiate with methods
Figure 2-2. Entry-Task-Validation-Exit Diagram
Control
(detail introduced for the
Control first time in this picture)
—> Output
t
Topu Activity
Input) Output .
(detail introduced for the (detail ot further mentioned
first time in this picture) 7 3 outside of this figure)
I
|
!
Mechanism

Figure 2-3. Structured Analysis and Design Technique Diagram

Though Statecharts typically require a considerable level of detail, their formality allows you to
construct process depictions that can be readily converted to executable instructions. Consequently,
Statecharts have excellent potential for providing a means to gain insights into process dynamics.

2.7

2. Overview and Fundamental Concepts

et F14A_Ctrl
AWCAP_Data I I e
Work_Indl_Chg)) R [
' 4 L :
[] .] ’
Investigation [.)
' ’
! 4
Gathering_Info Prep_InvRpt K
Review_Dod] Rev_Listingfl Review_Test
Duplcting_Prob el
Invest_Report . -~ " Duplic_Status
<€

Figure 2-4, Statechart Example 1

2.3.5 PETRI NETS
Petri nets (a variationis shown in Figure 2-5) are becoming progressively more widely used as a means

for building a representation of a wide variety of processes. Petri nets have been successfully used to
model manufacturing processes, chemical processes, and hard real-time embedded processes. One

2. Overview and Fundamental Concepts

of the most important characteristics of Petri nets is the fact that they capture the dynamic behavioral
characteristics of the system being modeled. In effect, Petri nets can be executed.

Authorize Process
p3a—1 Improvement Meetings

t3a—1 3a-8
t3a—-"7
Present Findings and p3a-2
il{eoommendat:ons to t3a—-5 Hold Process
anagement Im i
provement Meeting
Moderator Schedules
Meeting p3a—4
p3a—3 t3a—4
Ba=3 Wit Until Time
Available on
Management Schedule

Figure 2-5. Petri-Type Net

In addition to the graphical notation, Petri nets also come with a significant body of mathematical
formalism. By relying on the mathematical substructure of these diagrams, it is possible to do a static
structural analysis of the system’s dynamic behavioral characteristics without resorting to actually run-
ning a simulation. This is of key importance since it allows formal interpretation and analysis of a
process model for both desirable and undesirable characteristics (Levis 1992).

Another key factor contributing to the facility of Petri nets is its graphical nature. The basic graphical
representation principles are conceptually simple to learn and understand, and yet they can be used
to build detailed representations of complex systems or models.

2.3.6 TEMPLATE SUPPORT

Other notations exist (and new notations are being developed), but this set of notations represents
some of the most commonly used tools for representing software processes. Again, Section 5 will ex-
amine how these notations might be used to specifically model organizational processes. Neverthe-
less, one obvious question now is with this variety of notations already available, why are templates
even needed?

Several advantages to the template-based approach were presented in Section 1, and further benefits
are examined in Section 2.6. However, one additional use for the templates is their direct support of
any of these alternate notations. Templates can be used as an analytical tool to facilitate the organized
collection of information that will later be used to develop process models in SADT, ETVX, etc. Fur-
thermore, due to their compatibility with and use of descriptive text components (in the template
fields) the templates are capable of capturing more information about a process than might otherwise

29

2. Overview and Fundamental Concepts

be captured using an alternative notation. From this perspective, if a process representation already
exists in the format of an alternative notation (such as ETVX, SADT, etc.), the templates can be used
to augment or extend that representation by including additional information and relations that the
templates provide.

To summarize, there are several alternative process representation notations examined in this guidebook,
and all are compatible with the proposed set of templates. Although the templates can be used as a
stand-alone technique for representing a process, they can also be used prior to, in conjunction with,
or subsequent to alternative notations such as SADT, ETVX, Statecharts, Petri nets, etc. To determine
which approach or notation to use, it is important to discuss common characteristics of process definition
and modeling.

2.4 COMMON CHARACTERISTICS IN PROCESS REPRESENTATION

Process notations always imply some type of methodology by which the notation is used. When
comparing alternative notations and methodologies, relative advantages and disadvantages can be
highlighted by contrasting the various approaches from the perspective of key characteristics. The key
characteristics described in the following subsections include:

* Scalability

s Applicability

e Flexibility

» Readability

* Maintainability
e Learnability

* Robustness

e Relative formality

2.4.1 SCALABILITY

Scalability represents the degree to which a notation can simultaneously tolerate both abstraction and
details. Some notations may be especially good at representing high-level abstractions of a process,
but rather inadequate at capturing process details. Other notations may excel at representing details,
but may suffer severe “scale-up” problems when it comes to representing high-level vicw< of the pro-
cess. An ideal characteristic for a notation is to efficiently provide both abstract views and detailed
views of a process.

2.4.2 APPLICABILITY

A notation can be more or less applicable to the specific needs of a given domain of processes. For
example, some notations may be quite poor at representing parallelism; others may be quite poor at
representing the people involved in a process; and others may provide only a static view of a process

2-10

2. Overview and Fundamental Concepts

but no insights into dynamic characteristics. If, for example, parallelism, people, or process dynamics
are important to the domain of processes being represented, it is ideal to select a notation that can
capture and represent these and similar details important for and applicable to your specific domain.

2.4.3 FLEXIBILITY

Flexibility is the degree to which a notation can be altered and customized to better achieve specific
objectives. Note that this is a different quality than maintainability (described in Section 2.4.5). Flexi-
bility is the characteristic of being adaptable outside of a specific domain. A notation is relatively
flexible to the degree that it can be tailored for your specific needs.

2.4.4 READABILITY

A process notation is relatively readable to the degree that it allows a reader to quickly, clearly, and
accurately derive insights into the described process. An additional consideration with readability is
the amount of training or expertise required before a notation becomes readable. Complex mathe-
matical expressions may require years of relevant education before they can be accurately interpreted;
whereas, a simply flow-chart type approach may convey meaningful information even to the uninitiated.

2.4.5 MAINTAINABILITY

A process notation is more or less maintainable as a function of the ease with which changes can be
made to existing representations. Process improvement implies process change. Any process defini-
tions or models that you use to document the existing process will, therefore, need regular updates.
The ease with which such updates can be done is a direct reflection of the maintainability of that nota-
tion. Although maintainability is affected by, for example, readability, flexibility, and learnability, it
is a separate consideration. Just because something is readable, flexible, and learnable does not guarantee
that it is maintainable.

2.4.6 LEARNABILITY
The learnability of a process notation is derived from three factors:

* The average level of expertise needed by individuals before they can receive training in using
the process notation.

» The average amount of training required before they are capable of using the notation.

* The average amount of time it requires a trained person to transition from just being capable
to actually being proficient and adept at using that notation.

A highly learnable notation requires little or no related expertise, perhaps a day or two of training,
and it allows process engineers to become proficient in a few weeks or months of actual usage.

2.4."7 ROBUSTNESS

A process notation is robust if it can be used “as is” on a comparatively larger set of different processes.
Note that higher robustness can, to some degree, compensate for a lack of flexibility. There is less need

2-11

2. Overview and Fundamental Concepts

for a notation to be tailorable for different uses when that notation is usable in standard form across
a wide variety of applications. Likewise, a low level of robustness in a notation can be offset by a
relatively high degree of flexibility.

2.4.8 FORMALITY

The formality of a notation is a combination of a variety of factors. At a minimum, relative formality
is reflected by the degree to which a notation is unambiguous and deterministic. Formality increases
to the degree that it constrains the set of elements with which processes can be described, and itdefines
the operations and transformations permissible on those elements. An ideal level of formality for a
process notation is one that allows process representations or models to be machine compilable, link-
able, and executable. Even more formal are “provable” notations where it can be proven (using math-
ematical techniques) that the design representation is consistent with and complete against an analysis
representation, and the enactment representation is consistent with and complete against the design.

2.5 CHOOSING A PROCESS REPRESENTATION NOTATION

Whendeciding how to initiate a program of process representation, the selection of a process notation
is of central importance—it is the language you will be using to communicate about your processes.
The key characteristics described in Section 2.4 are important for guiding your thinking in choosing
a process representation notation. However, primary considerations when choosing an approach to
process representation depend upon your relative comparisons of characteristics that you consider to
be important.

Remember that all notations imply some type of methodology by which the notation is used. When
considering alternative process notations, you need to simultaneously consider the associated meth-
odology. Both the notation and its accompanying method of use determine its relative scalability,
readability, and robustness.

Some of the questions you will need to answer include:
* Can the notation represent details and also abstractions? (Scalability)
¢ Can the notation be used to represent your processes? (Applicability)
¢ Can the notation be adapted for use in representing different processes? (Flexibility)
* Are process descriptions resulting from this notation easily interpreted? (Readability)
e Can process depictions be easily updated to reflect changes? (Maintainability)
¢ Can average people become quickly competent without extensive training? (Learnability)
¢ Is the notation capable of representing a large variety of processes? (Robustness)
¢ Does the notation yield machine-interpretable process models? (Formality)

There are no single answers to these questions. In all cases, the answers depend on several important
factors relevant to your organization. As discussed in Sections 2.5.1 through 2.5.5, these factors

212

2. Overview and Fundamental Concepts

include the type of environment you have, the resources available, budget constraints, history, and
your immediate and future goals.

2.5.1 ENVIRONMENTS

Environments vary significantly between organizations, and they can even vary significantly between
divisions within a single organization. From the perspective of process representation, one major con-
sideration is the relative volatility of your environment. Are the processes you intend to model rela-
tively stable or highly dynamic? Are the changes relatively nominal, or are they oftenradical? Are the
changes predictable, or are they often unexpected? Additionally, is the environment dedicated to a
single domain of processes, or are there processes occurring within a variety of domains? Are the pro-
cesses of relatively short duration, or are they long-term? Are the processes highly iterative, or typical-
ly nonrepeating? Is management largely a human-intensive activity, or is there a large degree of
automated project management support? These are examples of environmental considerations that
can strongly influence which process notational characteristics are applicable to your specific site.

2.5.2 RESOURCES

Another consideration is the resources you have available to perform process analysis, design, and
representation. From the perspective of people, do you have highly trained or experienced process
engineers already available or willyou need to have people trained? Are you anticipating a large initial
effort (involving dozens of people), or will you initially involve only a few people? Will your process
engineers be full-time, dedicated resources; or will process-related work be a matrixed responsibility
added to their current responsibilities? Are you intending to use the process representations to sup-
port project management in a automated, integrated environment? If so, do you currently have the
tools and techniques needed to support that approach, or will you have to acquire them?

2.5.3 BUDGET CONSTRAINTS

Budget constraints are another major factor. How much funding is available to you for initiating the
process representation effort? After start-up costs, how much funding is available to support the ongo-
ing program? Is immediate cost-justification important, or can the costs be amortized over a longer
period of time?

2.5.4 HisTORY

Organizational history must also be considered. Is there an existing repository of process representations?
If so, are they rendered in one or multiple notations? Is there an existing experience pool for the per-
formance of process engineering? Was process engineering an effort previously done but canceled
long ago or has it been an ongoing effort? Is the staff allocated to process engineering being held
relatively constant, or is it being significantly increased or decreased?

2.5.5 GoaLs

Finally, and most importantly, you must consider both the organization’s immediate and long-term
goals. As emphasized earlier, it isimportant to take a goal-driven approach to process representation.
“Improved process maturity” is too ambiguous a goal to help answer many of the questions presented

2-13

2. Overview and Fundamental Concepts

here. Instead, explicit and well-defined goals are needed. Is the goal to develop a process guidebook?
If so, is the guidebook intended to be a technical reference or a self-teaching tutorial? Is the goal to
develop a guidebook of a proposed process that can then be distributed to reviewers and process ana-
lysts? Is one of the goals to develop material that will facilitate training employees in organization pro-
cesses? Is one of the goals to have a representation that facilitates gaining insights into dynamic and
static process characteristics? Does the representation need to facilitate developing automated pro-
cess models that can be executed? Is the goal of process model execution to gain insights into perfor-
mance issues such as deadlocks and bottlenecks? Is it a goal to use the representations to facilitate
project management?

2.5.6 SUMMARY

As stated, the answers to these questions vary from one organization to another; and even within the
same organization, the answers will change with time. Nevertheless, there is a general mapping that
can be made between the key characteristics of alternative notations and organizational issues:

* Your environment
s Available resources
* Budget constraints
¢ History
* Your immediate and future goals
Examining these relations will help you select your approach to process representation.

If your environment is volatile, then a notation with a high degree of maintainability is desirable. Ideally,
as your process goes through significant change, the notation and methodology you have chosen will
remain usable. If you will be defining and modeling processes across multiple domains, robustness and
flexibility become important. You will need a notation that is either capable of handling a variety of
processes or one that can be easily adapted to your changing needs. Conversely, if you will be targeting
a single domain, applicability is of key importance. Long-term processes imply a need for a notation
that exhibits a high degree of maintainability; and highly integrated, automated environments may
convey a need for greater formality in the selected notation.

The type of available resources also affects your choice of a notation. If you anticipate a high degree
of turnover in the personnel performing as process engineers, then you will need a notation that has
a high degree of readability and learnability. Conversely, if many of the process engineers are already
familiar with a particular notation, then learnability is less important—your resources already have
much of the fundamental training and experience.

If you must work within a very small or very tight budget, you will need a highly scalable notation. This
gives you the opportunity to build either very high-level abstract representations or, if it is more expe-
dient, to build very low-level detailed representations of isolated or highly cohesive sub-processes. Ei-
ther way, a considerable amount of progress can be accomplished with comparatively little time and
effort. Similarly, if you need short-term confirmation of beneficial results, then both scalability and
learnability are crucial. Under such budget or schedule constraints, you cannot afford a notation that
requires either extensive training or labor- and time-intensive application.

2. Overview and Fundamental Concepts

History is a key consideration, but so is your view on history. It may be that your organization has built
a small resource pool of people familiar with the use of a particular notation. If the notation is applica-
ble to your process domain, then itis sensible to give close consideration to that notation for represent-
ing your processes. However, it also may be time to depart from history and introduce a new notation.
In short, the applicability, learnability, and maintainability of a notation can rapidly become more
important to you than history of usage within your organization.

A notation’s relative support of your current and future goals can involve several, if not all, of the key
characteristics already discussed. If your goal is to develop process guidebooks or self-teaching tuto-
rials, for example, then readability and learnability are primary considerations. If your goal is to devel-
op process models and study them for temporal or behavioral characteristics, then you need a notation
capable of capturing process dynamics. This implies you need a notation with a relatively high degree
of formality. If one of your long range goals is integrated process automation, then formality may
become of central importance.

As a general rule, the more flexible, robust, maintainable, and learnable a process representation
approach can be, the more usable it is. As discussed in this section, certain environmental, budget,
resource, historical, or goal-oriented constraints become more important, others become less impor-
tant. Nevertheless, the Consortium believes that there are advantages to having an approach to pro-
cess definition and modeling that manifests all of these characteristics to a high degree. As discussed
in Section 2.6, this is the rationale behind the template-based process representation approach proposed
in this guidebook.

2.6 BENEFITS TO THE TEMPLATE-BASED PROCESS REPRESENTATION

This guidebook presents a set of templates and corresponding graphical conventions for use in process
definition and modeling. These templates can be used in both pre- and post-support of other process
representations. More importantly, the templates can also be used as a stand-alone technique for pro-
cess definition and modeling. The following material presents additional benefits to template-based
process representation by examining the templates from the perspective of key characteristics.

2.6.1 SCALABILITY

The templates have a very high degree of scalability. Each template contains a set of fields for
representing inclusion relations. Therefore, arbitrarily long chains of ancestries can be defined. A
template can be established as a parent template and other templates can serve as its “children.” Any
or all of those child templates may, in turn, have further (grand) children which likewise may have still
other children. Consequently, you can use the templates to capture the most exacting and detailed
process information, the most general or abstract process information, any level or “view” between
those extremes, and any combination of these views.

2.6.2 APPLICABILITY

You will also find the templates to be highly applicable to your domain because the templates have
been explicitly designed for representing organizational (as opposed to computer-executed) pro-
cesses. The different template types (managerial and production events, roles, resources, products,
research, intemal constraints and external constraints) immediately provide a rich set of fundamental
conventions for capturing many of the important characteristics of your process.

2-15

2. Overview and Fundamental Concepts

2.6.3 FLEXIBILITY

As described in Section 3, you will find the templates to be an extremely flexible and highly tailorable
tool for process representation. The structural, hierarchical architecture that underlies the templates
readily accommodates the addition of new levels to the hierarchy, new types (or “meta-classes”) at
the highest level, or new sublevels under any existing or new level. Additionally, field and content
changes can be made to the templates at the lowest level or at higher levels where the changes canthen
be “inherited” by lower levels. Though the templates are completely useable as is, they can also be
easily adapted to your specific needs. '

2.6.4 READABILITY

The templates preserve the detailed readability of pure text-based representations because the majority
of template fields allow unconstrained descriptive text. Additionally, the templates also support orga-
nizational or global readability because of template interrelationships and especially because of the
accompanying graphical conventions diagraming template-based process architectures and models.

2.6.5 MAINTAINABILITY

The maintainability of template-based process representations is quite high because template usage
is conducive to the construction of relatively modularized process elements. Each template allows you
to define an element both in terms of its internal characteristics and in terms of how that element re-
lates to the other elements in the representation. As a result, “information hiding” (the encapsulation
of implementation details so that they are invisible to the outside world) is directly achievable through
template usage. You can change a template without having to perform compensating changes in nu-
merous other templates. This yields architectures that are highly tolerant of maintenance, updates,
enhancements, and similar modifications.

2.6.6 LEARNABILITY

Learnability is one of the chief benefits to the template-based approach described in this guidebook.
The associated tools and techniques are comparatively quite simple, yet they can be used to capture
and depict even highly complex processes. The use of these templates does not require any special
background or education, and trainees can be easily constructing process representations by the end
of their first day of training. There are relatively few rules that need to be followed, yet when adhered
to, the result is well-defined process representations.

2.6.7 ROBUSTNESS

The templates achieve a high degree of robustness by net attempting to focus on just one specific
domain, but instead by focusing on the phenomenon of process itself. The only assumption behind
these templates is that the representation being constructed is intended to design and/or model a pro-
cess. The type of process is not particularly important. Whatever that process is, if you describe the
flow and relationship of events, the passage and evolution of products and research, the people and
other resources needed by that process, and the constraints the process is subject to, you will capture
enough information to understand and improve that process. All of this can be achieved by using the
templates in their current form. Though tailoring the templates is certainly an option, the templates
are robust enough that you may prefer—especially initially—to use them just as they are.

2-16

2. Overview and Fundamental Concepts

2.6.8 ForRMALITY

Finally, the templates can support differing degrees of formality. This preserves the ability to choose
the degree of formality appropriate to your needs. Since increased formality typically translates to in-
creased cost, you may decide to use the templates to build low or moderately formal representations.
These representations would be characterized by the relatively high use of free-form text-based de-
scriptions when providing or filling in field values. Increased formality can be achieved by, for exam-
ple, instituting a policy that all text-based fields must use some form of structured English (similar to
that used when writing pseudo-code for a software program). You can achieve still higher degrees of
formality by further constraining text-based fields to structured English and first-order predicate cal-
culus. If you layer onto this the explicit use of states and state transitions (presented in Section 3), you
can achieve a sufficiently precise and nonambiguous degree of formality. From here, the template-
based representation can be entered into and mechanically executed within an integrated, automated
process support environment.

2.6.9 SUMMARY

To summarize, the benefits of template-based process representation include their versatility to be
used in both top-down (functional decomposition) or bottom-up (object oriented) methodologies for
process analysis, design, development, and verification. Additionally, the template field values canbe
incrementally established which allows template usage to employ cyclic or spiral development tech-
niques. There are explicit fields on the templates for referencing, or binding to, other templates so that
both the characteristics of a given template and the relationships it has with other templates are quite
visible and accessible. This facilitates maintaining and updating not only the information contained
within the templates, but also the overall process architecture represented by the templates.

Template usage is based on a few simple conventions and requires no special background or experience;
therefore, training requirements will be nominal. Furthermore, they can be used as a foundation for
building representations using extensions of other notations (such as SADT or Petri nets). The
templates can also be used to augment any existing representations based on other notations.

Another benefit of the template-based approach is that using these templates is amenable to automation
and automated tool support. Initially, you may decide to provide automated support via some com-
mercial tool designed for electronic forms management. More versatile automation can be achieved
by forms management that includes hyper-text, or “hot” links between instantiations of the various
templates. Coupled with a “windowing” computer environmient, the construction, use, and applica-
tion of the templates or the resulting process representations can be readily and directly supported
through automation. At this point, it is a relatively small step to achieve executable process
representations that support both project-level and process-level management.

Finally, you should remember that the templates were designed to be tailorable to site-specific or
organization-specific needs. If you work under special circumstances or have uncommon require-
ments or needs, you can readily alter the templates so that they provide you with improved support
exactly where you need it. Should your needs change, the templates can be altered to conform to the
new priorities. The templates not only support you in efficiently changing your process, they also
support efficiently changing the way you change your process.

2.7 PROCESS REPRESENTATION TERMINOLOGY

The study of process representation critically depends on clear communication. Process-specific
communication depends upon the study of terms, definitions, and word meanings commonly used

217

TGS S:G

2. Overview and Fundamental Concepts

within this field. Process representation is a relatively new field, and it is common for there to be
inconsistency in the use and meaning of terminology. The following definitions are not meant to imply
that this is industry standard usage. Nevertheless, the usage presented here is as close to industry
consensus as can be determined at this time.

2.7.1 PROCESS REPRESENTATION

Process representation is a general term referring to the combined or sequential efforts of jointly
performing process definition and process modeling. Typically, process definition is the more abstract
side of process representation, and process modeling is the more detailed side.

2.7.2 PROCESS DEFINITIONS

Process definition is the act of representing the important characteristics of a process in a way that
facilitates understanding and communication. Process definitions can be entirely text-based and un-
structured, or they can be of varying degrees of increasing structure and formality. As a representation
becomes progressively more structured and formal, it transitions from a process definition to a
process model.

2.7.3 Process MODELS

Process modeling both extends and constrains process definition by requiring that the process model
adheres to a predefined set of methods and structural conventions; the latter are often rendered
graphically. Models can by syntactically correct: all the rules and conventions of using the modeling
notation have been complied with. Models can also be symantically correct indicating that the model
is an accurate representation of a real-world process.

2.7.4 PROCESS EVENTS

Events are processes, activities, or tasks. There are few objective criteria for distinguishing between
a process, an activity, and a task. Most attempts to discretely distinguish various levels are subjective.
Events are organized into collections; the events in a collection typically form a tree or a network of
trees. The root of a tree is referred to as a process; interior nodes are activities; and the leaf nodes
are considered tasks.

It is useful to allow a “view of interest” consisting of subtrees of the total process. Each subtree has
its own unique root process, set of activities, and tasks. By definition, a process is a single node that
has no parent and contains 0 to n activities and tasks. Each activity may also contain 1 to m activities
and tasks (an activity must contain at least one task, otherwise it is, by definition, a task). Each task
is atomic and, as such, cannot be further decomposed within the current degree of detail of a given
view. In Figure 2-6, E1 is the process, E2, E3, E4, E6, E10, E14, and E16 are activities, and everything
else (E7, E8, E9, E11, E12, E13, E17, E18, E15, E19, and E20) is a task.

The shaded region in Figure 2-7 defines a view of interest. Like the total process, it too contains a root
process and a set of activities and tasks. This view’s “process” is E10, which is comprised of only one
activity (E16) and three tasks (E15, E19, and E20).

As a final example, consider the same overall structure with a different view of interest (Figure 2-8).
If this is the view of interest under examination or discussion, E2 is the process and E6 is the only activity.

2-18

2. Overview and Fundamental Concepts

C]
E2 E3 E4
|] I—_J_l
ES E6 | E7 E8 E9 E10 Eil
[] —
E12 E13 E14 - |E15 E16
—— —
E17 E18 E19 E20

Figure 2-6. Event Structure

|es|] [ms] [e7] [es] [E0
[E2] [Es3 El4
E17 E18

Figure 2-7. Event Structure View 1

The tasks are E7 and E14. Note in this example that the view of interest does not necessarily have to
include the original tasks of some larger perspective. Activities in the overall structure can become
leafs (tasks) in a subview (as with E14 in Figure 2-8). You can select a view that is in the “middle” of
a larger perspective yet not look as high or as low as the original perspective. Also, note that when
selecting what had been an activity, you can optionally include none of the original subactivities or
tasks (as with E14 in Figure 2-8), all of them (as with E16 in Figure 2-7), or a partial selection (as with
E6 in Figure 2-8).

To summarize, with these distinctions, it is necessary to consider the view of interest before defining
“what is a process” and “what is a task.” Put in more formal terms (using a simplified process tree in
which all branches are of the same length), if “m” signifies the uppermost level of a process model,
“n” signifies the lowermost level, “a” signifies some number of levels below the top, and “b” signifies
some number of levels up from the bottom. Then when looking at an m+a, n—b view of the process
hierarchy (defining the highest and lowest levels of interest, respectively), the m+a level activity (of
which there is typically only one) becomes the “process” and all n—b activities become tasks (i.e., the
lowest level “atomic” events in our particular view of interest). The remaining nodes between m+a
and n—b are the activities.

2.7.4.1 Process

As discussed under “events,” process is a relative term. For the purposes of this guidebook, a process
is considered to be an event that is superordinate to all events of which it is comprised. Processes can

2-19

2. Overview and Fundamental Concepts

E4

F_J_l

E10 Ei1l

E15 E16

I'—'J_l

E17 E18 E19 E20

Figure 2-8. Event Structure View 2

be comprised of one or more activities and tasks. In some terminologies, a process is considered to
be something that is perpetually ongoing; €.g., a quality assurance process.

2.7.4.2 Activity

An activity is an event composed of one or more subactivities or tasks. It has at least one parent event
and implies at least one child event. Activities are typically used to initially partition or group work
without regard to the resources needed, sequencing, or other enactment details. In some terminolo-
gies, an activity is considered something of finite duration that explicitly starts and stops, €.g., the se-
ries of inspection activities associated with inspecting a particular artifact. Activities are modeled
using all four types of relations. As discussed in Section 2.7.20, these relations are:

¢ Inclusion

* Sequence
* Specialization
¢ Reference

2.74.3 Task

A task is an event: one of the basic components in a process description. A task is atomic; it has no
child events and has at least one parent event. A task is typically enacted by a human, which requires
process planning and control; and it is typically composed of an arbitrarily complex ordering of steps.
Tasks can participate only as a subordinate in inclusion relations, but may participate unrestricted in
sequence, specialization, and reference relations. As with activities, the term “task” is typically used
to define something of finite duration.

2.7.5 PrROCEsS THROUGHPUTS

A throughput is either a tangible or intangible artifact. Throughputs usually refer to intermediate and
final (sub)products of the software development process. They can be a physical artifact, usually mod-
eled as a product (such as a module, a document, or a schedule), or an intangible artifact, such as the
knowledge gained from having performed research.

2-20

2. Overview and Fundamental Concepts

2.7.5.1 Products

Product artifacts are tangible throughputs within a process. This type of throughput typically represents
the vast majority of artifacts that pass through a process. Examples include code modules, end-user
guidebooks, circuit boards, and anything else tangibly produced by a process. Products can be decom-
posed into subproducts, sub-subproducts, etc. This decomposition is captured within a model by the
inclusion relation. '

2.7.5.2 Research

Research is a by-product of a process; but it differs from products in that research is considered intangible.
If for instance, the research leads to a technical paper, that technical paper is modeled as a product.
However, if experiments or investigations are being performed within one or more events, but nothing
tangible is available, the throughput can still be explicitly modeled as a research (intangible) artifact.
As with products, research can be decomposed into subresearch, sub-subresearch, etc. This
decomposition is captured within a model by the inclusion relation.

2.7.6 PROCESS SUPPORTS

A process support is any nonthroughput item needed by an event for it to be performed. Events need
throughputs, as that typically is the purpose of events: to accept one or more throughputs; modify, ma-
nipulate, inspect, and possibly create one or more new throughputs; and pass those along to other
events. However, more is needed by an event than just the throughputs. These nonthroughput items
are all modeled as supports. Two common types of support include roles and resources.

2.7.6.1 Roles

Roles commonly represent either individual humans or humans working in concert toward acommon
goal or set of goals. Consequently, “programmer,” “manager,” “clerk,” etc., all define roles that can
be assumed by individuals. However, “programming team,” “inspection department,” and “quality
assurance division” also define roles. In the latter case, the roles are organizational roles as opposed
to individual. For process definition, roles can be defined at all levels of abstractions.

2.7.6.2 Resources

Resources are nonhuman items needed to support an event. Examples include equipment, office
space, supplies, and funding. All items that might be required to support an event can be modeled as
resources. Resources can be decomposed (using the inclusion relation) so that while one level of event
abstraction shows that the training building is required, at a lower or more detailed level of abstraction
the support might show that only a small classroom is actually required.

2.7.7 PROCESS CONSTRAINTS

Process constraints describe the limiting conditions associated with the activation, performance, or
cessation of an event. Whereas supports can be viewed as those things required to enable or make the
right things happen, constraints can be viewed as those thingsrequired to disable or prevent the wrong
things from happening. In this guidebook, constraints have been divided into two general types: internal
constraints and external constraints.

2-21

2. Overview and Fundamental Concepts

2.7.7.1 Internal Constraints

Internal process constraints are typically managerial in nature and usually take the form of authority
and permission. Examples of internal constraints include management authority or permission re-
quired before an event can commence. Internal constraints also convey authority to roles to suspend
events, cancel events, recommence events, or cease events. In all cases, internal constraints are always
coupled with a role (typically a role signifying lead or managerial responsibility, but in all cases a role
signifying—by definition—some form of authority). As a rule, internal constraints are those
constraints that you have authority to change, countermand, or enforce.

2.7.7.2 External Constraints

External constraints include all factors that may limit or constrain how an event proceeds and that are
not directly attributable to local authority (which are modeled as internal constraints). Examples of
external influences that may constrain an event include quality requirements, corporate standards,
division policies, engineering procedures, process guidelines, and management directives. External
constraints differ from internal constraints in that they are usually not subject to discretionary use—
they are intended to be, and expected to be, explicitly followed regardless of project-specific issues.

2.7.8 PROCESS ANALYSIS

Process analysis is a general term that refers to several different types of analysis. One form of process
analysis is the analytical effort performed so as to construct or formulate a definition of a process. This
“upstream” form of analysis usually involves study of corporate guidelines and procedures and inter-
views with management and engineering staff. Another form of process analysis involves examining
an existing representation of a process. This “downstream” form of analysis is employed as a key step
in performing process improvement. In addition to the analysis of the static representation of a pro-
cess, analysis can also be performed on the dynamic characteristics of a process. Commonly, this in-
volves the collection and interpretation of process-related metrics. In rare cases, the representation
itself may yield a model that can be executed to simulate process dynamics, and analysis can be
performed against this dynamic model.

2.7.9 PROCESS DESIGN

Process design is the act of translating process requirements and objectives into a cohesive system.
Like process analysis, the design effort may be directed toward an initial representation of a process
or toward altering an existing process representation so as to design a new process. High-level designs
canbe built entirely of references to events, throughputs, supports, and constraints; detail designs may
explicitly reference processes, activities, tasks, products, research, roles, resources, and internal and
external constraints.

2.7.10 PROCESS INSTANTIATION

When process design is completed, the next stage usually is to instantiate a project-level process plan
from the process representation. This involves replacing variables with actual values. Hence, if a de-
sign: calls for two people in the role of programmers, instantiation involves filling those roles with the
names of actual people. Likewise, resource requirements are mapped to actual resources, and general
product types are replaced by actual product names. The result of process instantiation is a project
process model.

22

2. Overview and Fundamental Concepts

2.7.11 Projzct PROCESS MODEL

A project process model is an instantiation of a process representation that explicitly states the names
of actual people, products, and resources intended for use within a specific project. The project pro-
cess model is used as a management aid, and ideally includes such information as milestone dates and
cost data. Once the process is enacted, actual schedule and cost data can be compared against the
planned version.

2.7.12 Process ENACTMENT

Process enactment is the execution of a project process model. Enactment indicates that actual work
is being performed or, at a minimum, that work has at least commenced and is expected to continue.
Currently, most environments enact a process through traditional or manual management methods.
In highly integrated, automated environments, there is excellent potential for process management
through process automation.

2.7.13 PROCESS AUTOMATION

Process automation involves environment-based support of process management. The degree to
which an environment can participate in and facilitate process management can vary widely. At one
end of the spectrum, an instantiated process model can be regularly polled by an environment; and
electronic mail sent to notify participants that certain activities have completed, other activities are
cleared tocommence, and certain resources are now available. At the other end of the spectrum, these
environments can automatically collect process-related metrics, detect potential or actual process
bottlenecks or deadlocks, provide management with summarized reports of project status, and
potentially can even provide dynamically sensitive recommendations on alternative process options.

2.7.14 PROCESS MATURITY

Process maturity is a phrase used to convey levels of process quality. Generally, higher levels of
process maturity indicate improved productivity and reduced risk. Currently, process maturity is con-
sidered to map into five general levels. From lowest to highest, the process maturity levels are ad hoc,
repeatable, defined, managed, and optimizing. This concept was examined in greater detail in
Section 2.2.

2.7.15 PROCESS IMPROVEMENT

Process improvement takes many forms, but it is commonly considered to be the evolution of a process
from lower levels to higher levels of process maturity. Pragmatically speaking, process improvement
can also involve specific efforts to reduce costs, reduce staff turnover, mitigate risk, improve product
quality, increase corporate process flexibility, improve moral, reduce time-to-market, increase cus-
tomer satisfaction, reduce process redundancy, reduce backlogged orders, accelerate accounts
receivable collections, and essentially all other areas of improving organizational competitiveness.

2.7.16 PROCESS ASSETS

Process assets are self-contained process “pieces” or modules that can be used in combination with
other process assets to rapidly develop tailored process models. Process assets may involve predefined

2-23

2. Overview and Fundamental Concepts

collections of roles into teams, predefined collections of subproducts into products, and predefined
collections of tasks and activities that can be used in concert to guide work in combination with agener-
al process model. Process assets that consist entircly of events and event relations are called process
architecture assets. Process assets that do not involve any events are process elements (roles, products,
and resources). Process models can be constructed of process assets by selecting a process architecture
and then incorporating the necessary process elements into that architecture.

2.7.17 PROCESS ASSET LIBRARY

Process asset libraries are common repositories for the storage and retrieval of process assets. As with
all librarian-oriented tools, a process asset library needs effective query or search mechanisms, import
and export facilities, and version management.

2.7.18 ASSET GRANULARITY

Asset granularity is a phrase used to refer to the relative degrees of abstraction or detail conveyed
within a process asset. “Large” or “high” granularity refers to assets that have comparatively little de-
tail and that use abstraction extensively. Conversely, “small” or “low” granularity conveys assets that
have comparatively more dctails and use relatively less abstraction.

2.7.19 ASSET INTERFACZ

Assets can be described, stored, and matched for compatibility as a function of their interface with
other assets. The most general view of an asset’s interface is the set of all references originating from
that asset. These references include sequence, inclusion, specialization and reference relations. Special-
ized examination of an asset’s interface can be constrained to just the sequence relations (applicable only
to assets containing events) or to just the throughput references.

2.7.20 PROCESS RELATIONS

Processes can be modeled as sets of objects that are bound to each other by a variety of pre-defined
relations. This guidebook uses four types of relations to bind process objects. These are sequence
relations, inclusion relations, specialization relations, and reference relations.

2.7.20.1 Sequence Relations

Sequence relations are pre- and postset relations that exist between and among events. The preset of
cvents to a given event are all events which immediately precede the event of interest. Similarly, the
postset is the set of all events which have the event of interest in their preset. From a minimalist per-
spective, all that is required to construct a process model is a set of events and an ordering or partial
ordering of that set. Sequence relations are used to define the ordering of events.

2.7.20.2 Inclusion Relations

Inclusion relations are the most general form of “parent/child” relations. All events, throughputs,
supports, and constraints can be (optionally) decomposed by using inclusion relations. Products can
be shown as including subproducts, and teams can be shown as including individual roles.

224

2. Overview and Fundamental Concepts

2.7.20.3 Specialization Relations

Specialization relations are a means for indicating inheritance. The child object in a specialization
relation is a specialized form of the adult. For example, a role object described as “Programmer” may
have specialized forms called “C Programmer,” “Ada Programmer,” and “Fortran Programmer.”

2.7.20.4 Reference Relations

Reference relations are all relations within process modeling that are not sequence, inclusion, or
specialization relations. A reference relation conveys that one object or asset either references or is
referenced by another object or asset. Reference relations include an event referencing an external
constraint it is subject to, a role referencing an internal constraint within its authority, or a product
referencing an event it evolves through.

2.7.21 AssiEr CouPLING AND COHESION

The use and meaning of coupling and cohesion within and among process assets is ideniical to its use
in the field of software engineering. High degrees of coupling between assets indicates that there are
a comparatively large number of sequence or reference relations that exist between those assets. Low
coupling indicates a relatively minimal number of interrelations. High asset cohesion indicates that
the asset employs strong “information hiding” techniques and that all aspects of its internal work is
closely related. As a rule, low coupling and high cohesion are considered desirable qualities.

2.7.22 PROCESS ARCHITECTURE

A process architecture is a representation of a process that limits its contents to only events, sequcnce
relations, event inclusion relations, and event specialization relations. Abstracted out of the architec-
tural view are such issues as throughputs, supports, and other elements which, when combined with
an architecture, can yield a detailed process model.

2.7.23 PROCESS NOTATION

A process notation is any predefined set of symbols which, when combined with a methodology, can
be used to render a depiction or representation of a process. In the most abstract sense, text-based
process definitions use the character set and grammar rules as their notation and methodology, re-
spectively. More commonly, however, process notations should include some degree of graphical abil-
ity. SADT, Petri nets, Statecharts, ETVX, and STDs are each distinctly different notations that can
be used for representing processes.

2.7.24 DEGREES OF FORMALITY

Relative formality is of critical importance for automated or executable process models. At a
minimum, process models should provide a consistent view of the process being modeled. A process
model needs to communicate nonambiguous information. With increasing formality, there is reduced
ambiguity. At its most formal, a process notation is coupled with a supporting calculus, algebra, or both.

2-25

2. Overview and Fundamental Concepts

This page intentionally left blank.

2-26

3. PROCESS DEFINITION TEMPLATES

The preceding material has presented an introduction and overview of key concepts of process definition
and modeling. The purpose of this section is to describe and detail a set of tools and practical means
for applying process definition and modeling. Section 3.1 explains the reason for choosing this specific
set of templates to support process representation. Section 3.2 presents details on the process tem-
plates and explains how these templates (or some subset) can be used to initiate process definition.
It should be noted that this is simply a recommended set of templates with recommended fields for
each template. They are designed to be applicable across the greatest variety of process representa-
tions possible. As discussed later in Section 4.5.2, the approach taken readily allows tailoring these
generalized process data collection templates to the specific characteristics and needs of a particular
corporate or project environment or process representation. Section 3.3 presents a graphical notation
that supports diagrammatic depictions of template-based process models. The graphical notation is
also based on the reasoning presented in Section 3.1; it therefore directly corresponds to and supports
the templates presented in Section 3.2.

As noted in Figure 3-1, after reading Section 3 you may skip to the summary chapter. However, for
more details on using the templates, optimization, and additional material on process modeling and
definition, the Consortium recommends that you continue with Sections 4 and 5.

o
Introduction

v

¢))
Overview and
Foundation

Figure 3-1. Guidebcok Organization View 3

3.1 DERIVING PROCESS REPRESENTATION TEMPLATES

Models are abstractions. With any abstraction, the objective is to emphasize important characteristics
and reduce or eliminate nonessential information. However, for an abstraction or model to be widely
applicable, it must capably represent all important characteristics in its target domain.

31

3. Process Definition Templates

Your interest in process extends beyond just the events themselves. You are also interested in the types
of products produced by the process; the resources required; and the relationships between products,
resources, and events. To determine what the model needs to capture, you need to methodically ana-
lyze the concept of a process. Shown below are a series of figures that construct the model used as the
foundation for developing the templates.

Asshown in Figure 3-2, at the simplest or most abstractlevel, one view of a process is that it is anything
that uses inputs and produces outputs.

Inputs used by Pr Outputs produced
the process. | by the process.

Figure 3-2. Process Model Construction—Level 1

However, it can be seen that not everything required by a process is consumed in producing the outputs.
Although some inputs are converted, consumed, or otherwise transformed as the process constructs
its outputs, other inputs act only as catalysts. To distinguish these two classes of inputs, variable inputs
are those used, consumed, or included in the outputs; and their rate of use tends to vary (in the most
general sense) in proportion to the volume of outputs being produced. Catalytic inputs—those not
“consumed” by the process—are referred to as fixed inputs (Figure 3-3) because they are less likely
to vary in direct relation to the volume of outputs. Examples of variable inputs include raw materials,
supplies, and subcomponents. Examples of fixed inputs include machines, meeting rooms, management
staff, engineering staff, and administrative staff.

Variable inputs used

by the process. :> P t?yuttl}::ts produced
Fixed inputs used by :> process.
the process.

Figure 3-3. Process Model Construction—Level 2

Since fixed inputs generally tend to remain available to the process, it is diagrammatically advantageous
to move these inputs to the bottom of the process “bubble.” The revised diagram, as depicted in Fig-
ure 3-4, implies that variable inputs are directly related to the outputs, but both inputs and outputs
depend upon the process “catalysts” or fixed inputs.

At this point, the model represents a process as something that converts inputs to outputs by relying
on a set of resources. Clearly, all this does not happen accidently. The model must also show, as indi-
cated in Figure 3-5, that a deliberate process is a set of events subject to control. Your definition of
a process is now: a controlled set of events that uses inputs to produce outputs by relying on a set of
resources. (Readers familiar with SADT or integrated computer-aided manufacturing definition lan-
guage (IDEFO) will note that this perspective is analogous to the approach used in those representations.)

Finally, a process does not always have the advantage of working with tangible phenomena or objects.
For example, although a meeting room is tangible, the responsibility of people using that room is not.

32

3. Process Definition Templates

Variable inputs used Outputs produced
by the process. by the process.

<

Fixed inputs used to
support the process.

Figure 3-4. Process Model Construction—Level 3

Change control

U

Variable inputs used Set of Outputs produced
by the process. Events by the process.

Fixed inputs used to
support the process.

Figure 3-5. Process Model Construction—Level 4

Although a software requirements document is tangible, the research that went into developing the
requirements is not. As shown in Figure 3-6, inputs, outputs, supports, and controls can all be divided
into tangible and intangible classes.

The abstract model shown above, and the detailed model (which distinguishes tangible from intangible)
both directly correspond to the templates discussed in Section 3.2. As shown in Figure 3-7, the
constraint templates are used to capture information regarding change control. Throughput tem-
plates are used to capture information about both the inputs and the outputs of a process. Support
templates are used to capture information about people and objects needed to support a process.
Event templates capture information about the managerial and production activities and tasks occurring
within a process.

As explained in Section 3.2, constraint, throughput, support, and event templates are all “meta-class”
templates. Each has subordinate templates at the class level to represent tangible and intangible
instances. As shown in Figure 3-8, external constraints are considered intangible in the sense that

33

3. Process Definition Templates

Intangible Tangible
Controls Controls

Intangible

M ement
Inputs anag
Tangible Production
Inputs

Intangible Tangible
Supports Supports

Figure 3-6. Process Model Construction—Level 5

Constraint
Templates

Throughput | Event
Templates Templates

Support
Templates

Figure 3-7. Meta-Class Templates

external constraints are constraints that you cannot influence. This contrasts with internal constraints
which represent permission or authority and, therefore, are subject to “local” or internal decision
making. Product templates represent tangible throughputs (such as software modules or design docu-
ments), and research templates represent intangible throughputs. Resource templates represent tan-
gible objects that support the process (such as machines or facilities), and role templates represent
responsibilities (and, in combination with internal constraint templates, authorities) conveyed by
roles to people performing the process. Management templates and production templates represent

intangible and tangible types of events, respectively.

——

Intangible
Outputs

Tangible
Outputs

Templates

3. Process Definition Templates

External Internal
Constraint Constraint
Templates Templates

?esealn:h Management Research
emplates Template Templates
Product Product Product
Templates Template Templates

Role Resource
Templates Templates

Figure 3-8. Class Templates

It is important to note that this set of templates will allow you to construct process models that are
subject to a variety of control paradigms. For example, if you intend for your process model to depict
an object-oriented type of process, then the product templates (and states of products) will play a key
role in influencing the flow of events. Entry criteria, internal processing, and exit criteria will all make
extensive use of references to products and changes in the states of products. From this orientation,
it is not the flow of events that define the states of products, it is instead the states of products which
define the flow of events.

If you intend for your process model to depict a process driven by functional decomposition, then the
event templates (and states of events) will be the primary factors driving the process flow. In this case entry
criteria, internal processing, and exit criteria all make extensive use of references to events and changes
in the states of events. These models also make extensive use of inclusion relations (within and between
levels of events) to capture the hierarchy of events. Using this approach, the events will be the greatest
factor influencing not only the process but the products produced and the resources involved.

As a final example, you may want to model a process that is essentially governed by management. In
this case, it is not the state of products nor the occurrence of events that triggers or controls what occurs
next. The evolution of the process depends almost entirely on the decisions and actions of managers.
A model of this type of process makes extensive use of constraints, especially internal (or permission)
constraints. Entry criteria, internal processing, and exit criteria are largely stated in terms of numer-
ous internal constraints. In effect, events start when management states that they can start, and they
end when management declares them to be over, and so on.

The templates are not designed to be biased toward any particular process execution paradigm.
Object-oriented processes, functional processes, management-intensive processes, etc., can each be
depicted using this same set of templates. The primary difference is the detail allocated to the various
classes of templates and the types of references used in the entry criteria, internal processing, and exit
criteria.

3-5

3. Process Definition Templates

To summarize, the underlying model used for constructing the templates is quite simple. A process
isa set of events that typically has inputs, produces outputs, requires enabling supports that allow the
right things to happen, and is subject to disabling constraints that prevent the wrong things from hap-
pening. Events, throughputs, supports, and constraints; virtually all processes can be defined and mod-
eled using these constructs. As described in Section 3.2, the templates provide a simple means for
capturing, manipulating, organizing, and analyzing such information.

3.2 TEMPLATE DEFINITION AND LAYOUT

This section describes the templates and provides examples of paper-based representations. Using
paper to capture template information requires minimal start-up costs. However, any paper-only ap-
proach to process representation or documentation rapidly becomes quite difficult to maintain on
real-world projects. From the perspective of scale-up, it is ideal to use electronic forms management,
hyper-text, or some other automated support to facilitate capturing process information and main-
taining the integrity of interrelations between that information. The paper-based approach works well
for training, examples, and possibly even small pilot projects and case studies. However, large projects
will benefit from automation. When you consider automated support for a template-based approach,
you should reconsider template (or table) design based on the strengths of the particular automated
tool you intend to apply and tailor as appropriate. The design of the templates shown on the following
pages is not nearly as important as the information they contain, and the types of interrelationships
they capture.

As seen in Figure 3-9, the set of templates is derived from the following structure.
* One “Root” Template
* Four “Meta-Class” Templates
¢ Eight “Class” Templates

=1
Root | Foundation |

==
| A S SE—

Meta-Class Event | Tlmmghputl Support | Constraintl

ps cmte c—— e — c——— e c— c—— e — m—

Class Management -il Product —)| Role -i[External

K v) K e [K preseey [R v

Figure 3-9. Template Structure (Generic)

For the purposes of this guidebook, class templates are derived from meta-class templates which are
derived from a common root template. The root and meta-class templates are not actually used during
process definition; only class templates are used (in the diagram, class templates are the only

3. Process Definition Templates

templates shown with a solid boarder). However, the root and meta-class templates are useful for
discussing fields common to groups of templates and for simplifying tailoring the templates for site-
specific objectives. This structure allows easier construction and discussion of the templates and their
fields. Furthermore, this approach facilitates the development and use of an automated tool for
designing, maintaining, and using electronic versions of the templates.

All templates have the following fields in common: Name, Unique Identifier, Purpose, Comments,
and Revision History. Any field intended to be used on all class templates, regardless of type, is shown
on the foundation (root) template. The discussion of such globally common fields is found in the sub-
section that describes the foundation template. All meta-class templates “inherit” these common
fields from the root template. Each meta-class template adds additional information common to class
templates of that meta-class and not common to class templates of a different meta-class. For exam-
ple, under the event meta-class, there are class templates for management and production events.
These two classes have certain fields in common with each other. For example, they have fields for
entry criteria and exit criteria, and each class provides space for a logical description of these criteria.
Using the principle of inheritance, any field shown at the meta-classlevel of a template will also appear
on the class templates subordinate to that meta-class. (Also shown will be all fields that the meta-class
template inherited from the root template.)

As mentioned, these are generalized templates and it is expected—indeed, encouraged—that they be
tailored to the needs and characteristics of the corporate or organizational environment in which they
will be employed. Similarly, these templates can also be tailored toward the actual process notation
favored by a given environment. The purpose of the hierarchical architecture in the template design
is to explicitly facilitate the tailoring process.

When considering alternative template designs, consider the scope of any new field being added. Will
the new field be used on all eight of the class templates? If so, put the new field on the foundation
iemplate (all other templates will then inherit this field). Will a the new field be used on both the role
and the resource templates? If so, change the support template (at the meta-class level) and allow the
role and resource templates (and any other defined support templates) to also inherit it as a common
field. This approach makes it easy to introduce and document changes to the templates, yet preserves
the underlying consistency between templates.

Most of the templates described in this section make reference to the concept of state and state
descriptions. Understanding the state of something conveys insight into how that phenomenon can
change over time. A traffic light might be described as a three state device. That is, it has a state of
being red, yellow, or green. Ideally, the set of states for a given item will not overlap (i.e., the light can
not be simultaneously red and green), and the set of states for a given item will be complete (e.g., traf-
ficlights cannot turn purple). One of the primary advantages of using states in process modeling is that
they allow conditional expressions to be written in terms of states of items. For example, one activity
may need to be in a state of complete before another activity can transition from standby to an active
state. For most of the following templates, there is a recommended set of default states that can be
used to facilitate more precise representation of the relationships that exist between the various
events and components participating in an overall process.

In the following material, each template is discussed in turn. The contents of the foundation template
are discussed first. Each meta-class is discussed; and within each of these areas, the subordinate class
templates are described. Discussion of the graphical depiction of template-based process representations
is deferred until Section 3.3.

37

3. Process Definition Templates

3.2.1 FouNDATION TEMPLATE

The Foundation template (Figure 3-10) is the repository for all common fields shared by all template
classes. It reduces the input labor by concentrating all shared data on one template.

Root

‘_ 4
Meta-Class Event 'Ihroughputl |_éuppon | r;onstraint l
Class —)lManagement —)I Product =N Role —)I External

-)[Production -)I Research Resource 3| Internal

Figure 3-10. Template Structure (Generic)

Ideally, the layout and format of the Foundation template (reflected in the examples shown in this
section) also conveys the layout and format of the common fields on the class templates. Therefore,
if a Name field is shown in the upper-left corner of the Foundation template, all templates will show
a Name ficld in the upper-left corner.

The Foundation template example (Figure 3-11) contains the following fields:
* Level #
* Version Number and Date
* Name
* Unique Identifier
* Purpose
* Comments
* Revision History

The Level # field is an optional field that can be useful in representing levels of templates. All of the
templates can be used to represent a family of items. For example, a role might be constructed so that
at the highest level it is represented by a team. This could be the Level 1 templatz. Underneath the
team, there may be other role templates (such as team leader, principle engineers, and support techni-
cians) that detail how the team was comprised. These latter templates could be Level 2 templates. The
level number is used as a convenience to help you quickly understand some of the hierarchical
relationships between templates.

3. Process Definition Templates

el e e S 1
Level # . Version # and Date

l Foundation Template }
: Template Type :
i Name Unique Identifier ;
| |
erurpose l
l

| Comments :
I I
I [
| I
i

Revision History

.

|————-————_—_———————_-————-——————————-———————-—-——————

Figure 3-11. Foundation Template

3. Process Definition Templates

The Version # and Date field is shown as a single concatenated field. This is consistent with the
concept of segmented identifiers described in the preceding paragraph. It is often useful to know what
date a particular version was released or, conversely, to search for the version that was in effect on
some given date. Nevertheless, although version and date are combined into one field in this example,
this template can be tailored to show these as two distinct and separate fields (possibly even adding
a third field for the initials of the person who authored that particular version).

The Name field is used to assign a descriptive name to the item described by the template. The Unique
Identifier field is used to assure that each template can be identified uniquely. It should be noted that
there is considerable advantage to developing a segmented identifier in which each segment further
classifies the item being identified. For example, all product identifiers might begin with the letters
IP, representing an input-class template product item. Similarly, all task identifiers might begin with
ET, representing the event meta-class and the task class. The goal is to develop unique identifiers that
convey meaning in addition to uniqueness. A sequential number can be appended to the prefix to
assure uniqueness.

The Purpose field is used to provide a sufficient description of the template’s intended purpose. This
should be kept as short as is possible; however, if a more elaborate description is needed, the
Comments ficld may also be used.

The Comments field is for virtually any use deemed advantageous by whomever is using the templates.
Aside from more detailed descriptions of the item’s purpose described by the template, the Comments
field can also note potential problem areas, possible future enhancements, and questions for things
to be researched later.

Atthebottom of the Foundation template, the Revision History field is a means to track the evolution
of information contained within the templates. Especially in the case of large sets of templates, it is
typically more practical to simply update and replace individual templates, as required, than it is to
repeatedly generate entire new printouts of the full set of templates. When doing individual updates,
the Revision History field can facilitate a manual confirmation of document sets having the latest versions.

Note that between the header section of the templates (all the common fields except for Revision History)
and the footer section (Revision History), there is a large blank section. This section of the template
is reserved for lower level (meta-class and class) templates. Therefore, if the recommended approach
is followed, all class-level templates will have header and footer sections that, in format, are identical
to each other. Format variations that exist between class templates are contained within the large
reserved section in the Foundation template.

3-10

3. Process Definition Templates

3.2.2 EVENT TEMPLATES

The Event template (Figure 3-12) is, from one perspective, the most crucial template of this entire
set. In essence, a process can be formally.defined using nothing more than the Event template. It is
the only required meta-class template. Strictly speaking, all that is necessary for modeling a process
is some nonambiguous means for ordering (or partially ordering) the flow of events that comprise that
process. All else (the resources required by the process, the products produced by the process, etc.)
is optional. The flow of events, however, must be captured; this is the essence of process definition
and modeling.

- oo |
|
4 4 4
Meta-Class ?-hilghﬁ I_—-S“_PPol_i r_._co-lwin:—i
Class -)lManagement —)L Product _,l Role L3 External
—)l Production —)I Research L)I Resource 3| Internal

Figure 3-12. Template Structure (Generic)

To facilitate defining the entry and exit criteria for events, in terms of other events, the following state
terms are used:

* Pre-enabled
¢ Enabled

* In-progress

* Disabled

¢ Suspended
e Cancelled
¢ Completed

For example, the entry criteria to a given activity might state that activities A, B, and C all be in a state
of completed and that activities D and E be in a state of in-progress.

It is recommended that the state of a task (the lowest level of events described within a given model)
be described using only the default set of state terms (those listed above). Typically, this allows a task
to assume a state of pre-enabled, enabled, in-progress, or completed (the other state terms are used
for comparatively unusual situations).

31

3. Process Definition Templates

For more complex activities, intermediate transition terms could be used to allow further distinction
of current state. Specifically, for activities and processes the state term, in-progress, would be expan-
ded into any number of intermediate state terms. This approach is useful because even mildly complex
events may be desirable to discretely distinguish different stages of work within that event. For exam-
ple, in a given event, the in-progress state might be replaced by in-analysis, in-design, and in-review
states.

Both Event templates (Figure 3-13) share the Entry Criteria fields, Internal Processing fields, and
Exit Criteria fields. Entry Criteria and Exit Criteria fields can be readily separated into those that
are tangible and those that are intangible.

Tangible entry criteria in(_:lude:
* Products required (typically these are outputs produced by prior events).
* Roles required (possibly at various levels such as employees, groups, or departments).
* Resources required (computers, test equipment, etc.).
Intangible entry criteria include:
* Required research.
* Required coordination.
* Required authorization.

Required research is similar to required products, except that typically there is nothing tangible to
represent the research. Required coordination is simply a means to establish coordinating relation-
ships between events that otherwise have nothing in common; they do not pass products or research
between each other. Nevertheless, it is often necessary to coordinate events due to considerations that
are not otherwise reflected in the model. The required coordination fields (which can specify condi-
tions in terms of the state of other events) provide a means to easily represent such criteria. Required
authorization is (within this guidebook) modeled as constraints (specifically, internal constraints).
The purpose of required authorization is to facilitate modeling those types of events whereby they can-
not start until someone (with sufficient authority) gives permission for the event to start. In all these
examples, the entry criteria have been intangible.

Tangible exit criteria are entirely in terms of products produced by a given event.

Intangible exit criteria include research conducted by an event, and may also include coordination
(such as discussed above), and satisfaction of either (or both) external and internal constraints
(discussed further below).

With Entry Criteria and Exit Criteria, these fields can also be used to document logical relations. For
example, the entry criteria to an event might be logically stated as “(Activity-A and Activity-B must
be in a state of Done) or (Activity-A must be in a state of Done and (Activity B must be in a state of
Mostly_Done or Activity-C must be in a state of Done)) or Product-P must be in a state of Com-
pleted.” Asdiscussed in Section 4.6.2, one of process modeling’s goals is to keep the complexity of such
logical relations at an absolute minimum.

32

3. Process Definition Templates

|

Unique Identifier

Version # and Date

Event Template
Template Type

—— — — — — — —— S— —— — Sr— — — S——

#

[Level
|
l

|

| Comments

""Name

I Purpose

Exit Criteria

Internal Processing

| Additional States

Entry Criteria

Child Events

Figure 3-13. Event Template

313

3. Process Definition Templates

The Internal Processing field describes the work that occurs within the event being defined. This
description is typically composed of a series of steps detailing how the work should proceed. This de-
scription usually contains a variety of logical constructs (such as “if” statements, “while” loops, etc.)
to accurately capture the details of the work.

These templates also contain a field for Additional States. Events typically comprise two or more
sub-events (activities or tasks) and often require progress descriptions providing more detail than just
“in_progress” (the only default state that conveys work being done). The process analyst may elect
to replace the in_progress state with an enumerated set of terms. For example, progress through an
activity might be described using the terms: Early_Stages, Underway, First Build_Complete,
Second_Build_Complete, Ready_For_Evaluation, Rework_Underway, and Passed_Evaluation.

The Event template also includes the fields Child Events and Parent Event(s). The Child Events field
is used to list the “first generation” activities and tasks that participate in this event. The Parent
Event(s) ficld is used to specify those activities in which this event participates.

Two small (gray) regions of this template are left available for unique fields at the class level. The
uniqueness is introduced as a function of priorities. As shown on the following page, the Management
template gives more distinction to constraints, whereas the production template gives more distinction
to throughputs.

3. Process Definition Templates

3.2.2.1 Management Templates

The first class under Event is the Management template (see Figure 3-14).

Root | Foundation |

]
| S

4

-
Meta-Class I—E"ent | I;lrouishputl Support I '_Consuaiml
Class —)! Role External
L34 Production q Research Resource L) Internal

Figure 3-14. Template Structure (Generic)

In this version of the templates, there is little that explicitly distinguishes management events from
production events. Furthermore, many production-oriented tasks involve people who have the au-
thority to make management-level decisions, and many management-oriented tasks can involve pro-
duction-specific work. From the perspective of process analysis, the rationale behind distinguishing
between management activities and production activities is largely based on metrics. To facilitate the
measurement and evaluation of alternative management and alternative production options, it is nec-
essary to distinguish between the two. Is one management approach better than another with regard
to how a particular process executes? Unless data distinguishes between management and production
events, detailed comparative insights can be more difficult to achieve.

Both Management and Production templates have a region dedicated to noting applicable constraints.
However, the Management template, depicted in Figure 3-15, includes specific fields that distinguish be-
tween internal constraints and external constraints. The Internal Constraints and External Constraints
fields capture unique identifiers from those respective templates. These represent constraints on the
management event that cannot be readily described in terms of supports, throughputs, or other events.

External constraints refer to those influences that constrain a process outside the responsibility of that
process. For example, if the approval of a vice president is needed before some event can commence,
that would be noted in the Entry Criteria field as an external constraint. Conversely, internal
constraints are those inflaences that constrain a process but which are within the responsibility of that
process. This includes virtually all authority that is associated with the roles used in support of the process.
Each of these areas will be discussed in more detail as each template is discussed in turn.

Other fields on the Management template include Throughputs and Supports. Each of these fields
is a cross-reference field that establishes relations between and among the templates. The Throughputs
field is used for the unique identifiers of either or both Product or Research templates (which, in turn,
define details of the throughputs that are input to, manipulated by, or output from the event). The
Supports field is used for unique identifiers from Role and/or Resource templates. These templates
define the people and the tools, respectively, needed for the event to occur.

315

3. Process Definition Templates

Level # Version # and Date
Management Template
Template Type
Name Unique Identifier
Purpose
Comments
Additional States X
Entry Criteria Tnternal Processing Exit Criteria
Throughputs | Supports Internal External
Constraints Constraints
Parent Event(s)
Child Events

Revision History

Figure 3-15. Management Template

316

3. Process Definition Templates

3.2.2.2 Production Templates

The second class under Event is the Production template (see Figure 3-16).

Root {_;’oundation |

h_l_._.n

MetaClass I__Event l Throughputl r-—Support l Constraintl

Class -4Management Product Role —» External
—)l Research Resource ~»] Internal

Figure 3-16. Template Structure (Generic)

The Production template (Figure 3-17) is fundamentally identical in form and content to the Management
template. The Production template has entry criteria that are likely to be bound to the exit criteria of
other events, activities, or tasks. Conversely, the Management template is more likely to be stated en-
tirely in terms of the Constraint template (i.e., internal authorizations [via roles] or possibly directives
as defined on external constraint templates).

As with Management template, the Production template contains a field for establishing references
to applicable constraints. However, whereas the Management template specifically distinguishes be-
tween internal and external constraints, this is less important at the production level. Therefore, all
constraints, regardless of whether they are internal or external, are noted together in the areareserved
for constraints.

The Throughput and Support fields are also available on the Production template, except that
throughput is explicitly divided into product-based throughputs and research-based throughputs.
Hence, on the Production template, the region reserved for noting throughputs is divided into dedicated
space for noting and distinguishing between products and research.

Again, throughputs, supports, products, research, internal and external constraints are all examined
more closely in the following pages as their respective templates are discussed.

317

3. Process Definition Templates

Level #

Production Template

Version # and Date

Template Type

Name

Unique Identifier

Purpose

Comments

Additional States

SO R

Entry Criteria

Internal Processing

Products Supports

Research

Exit Criteria

Constraints

rParent Event(s)

Child Events

Revision History

Figure 3-17. Production Template

318

3. Process Definition Templates

3.2.3 THROUGHPUT TEMPLATES

The Throughput template (Figure 3-18) consists of Product templates and Research templates. These
and similar items are modeled as throughputs because they tend to be passed from one event to anoth-
er. That is, the output products or research of one event are used as input products or research to later
events. This continues until no more events are required and the throughput is considered finished.

Root I Foundation |
|_._.1—_..l

[Iy —

Meta-Class Event Support l Constraint I

s —— — f m—— c—

Class -3 Management —)I Product —)I Role —)|7 External
-)I Production L)l Research L)l Resource L3 Internal

Figure 3-18. Template Structure (Generic)

Generally, it is ideal to attempt to model throughputs as tangible throughputs, i.e., products. Hence,
the Research template should be rarely used; its primary purpose is to capture important relationships
between events in which nothing physical is available to support the model. For example, often when
research is done, some type of paper or document is produced. Maybe it is just a simple “white paper”
or perhaps a checklist or form where someone states that something is done. It could be just a weekly
or monthly status report. In all these cases, it is important to note that something physical, or tangible,
is produced and can be used in constructing the process model (e.g., “Status-Report-A must beina
state of Complete before Activity-C can commence”). A problem arises, however, when even inciden-
tal products such as these are not available to represent work that is occurring. In such cases, the Re-
search template can be used and that portion of the process model can specify relationships in terms
of intangibles. Again, this is less than ideal from the modeling perspective, and research templates
should only be used when no other alternatives exist.

The Throughput template (see Figure 3-19) adds two fields common to both the Product and Research
templates: Composed Of and Part Of. The Composed Of field defines the subproducts used to build
a product, and the sub-research efforts of which a given stage of research is composed. Both products
and research can have multiple “parents” in the sense that they can be used in a variety of higher level
outputs. Note, however, that products are only composed of other products, and researchis only com-
posed of other research. Although research may be required to support the development of a particu-
lar product (and occasionally, vice versa), this binding would occur within Event templates and not
within the Throughput templates. The Part Of field defines the opposite relationship of Composed Of.
The “parent” throughput (if applicable) of the throughput item currently being defined is listed in the
Part Of field.

The Evolves From Events field lists those processes, activities, and tasks that contribute to the particular
output. Often only the highest levels are listed. If an activity is needed to produce an output, and that

319

3. Process Definition Templates

Level # Version # and Date |
Throughput Template
Template Type
Name Unique Identifier
Purpose
Comments
Additional States EDescriptions Part Of
E Composed Of
Evolves From Events State Transitions (Event/Step)
External Constraints
Revision History

Figure 3-19. Throughput Template

3-20

3. Process Definition Templates

activity is composed of two tasks, only the activity needs to be listed. If only one task within that activity
is relevant to producing the described output, just that task is listed. However, there are times when
a throughput may reference explicitly events that are not at the “highest level.” In such cases, the
Evolves From Event field should show events at whatever level they are referenced. This is important
because this is a cross-reference field (i.e., on the Event teniplate, there is a field for indicating
throughputs; on the Throughput template, this is the field for indicating events). In all cases, explicit
references between templates need to match each other.

As with the Support and Event templates, it can be useful to have a state attribute associated with the
throughput item being described. These states allow more explicit logical relations to be established
within the Entry Criteria and Exit Criteria fields. For Throughput templates, the information is cap-
tured in the Additional States and State Transition (Event/Step) fields. In the case of Throughput
templates, the recommended state terms are:

¢ Unauthorized. The described throughput has not yet been authorized; therefore, it cannot be
created and no work (processes, activities, or events) can commence yet.

* Authorized. The throughput item is authorized. Any events that commence work on this item
can begin (given that all other event-specific criteria have also been satisfied).

¢ In Progress. The throughput is under development.

* In Rework. The throughput did not successfully pass quality or other compliance criteria and
is being reworked.

e Disabled. Work on this throughput item has ceased due to a lack of necessary resources.

e Suspended. Work on this throughput item has ceased due to a removal of work authorization.
When permission is received, work will recommence.

* Cancelled. Work on this throughput has ceased and no further work is contemplated or
expected. The throughput is not complete; it has been abandoned.

e Compieted. All planned work on this throughput is done.

Finally, there is a field on the Throughput template for listing External Constraints. This is a
cross-reference field and is used to bind throughputs and applicable external constraints to each other.
External constraints are discussed in detail later; but in general, they are used to represent influences
on a process that originate from outside that process.

The Throughput template consists of Product templates and Research templates. Currently, both
templates are comprised of the same set of fields. As a result, the following material does not
introduce any new fields.

K ¥)1

3. Process Definition Templates

3.2.3.1 Product Templates

The first template under Throughput is Product (see Figure 3-20).

Root 1 Foundation |
[P — |
I A R S—
Meta-Class Event ' Throughput I Support I Constraint l

. — —— e c— —

Class —)l Management -al Role —)L External
-)l Production -)l Research Resource Ly! Internal

Figure 3-20. Template Structure (Generic)

The Product template (Figure 3-21) defines the tangible artifacts that result from one or more
contributing events. These artifacts can be software modules, documentation, reports, results of test-
runs, etc. As discussed earlier, virtually anything tangible can be modeled as a product; therefore,
checklists are products: as are status reports, forms, invoices, and logs.

When defining a proposed process model, the definition should occur in terms of actual products. If
necessary, incidental products (forms or checklists) should be proposed as part of the overall recom-
mended model. When there are no actual products to track, it can be difficult to represent, manage,
or audit the process that actually occurs. Tangible products, by there mere existence, leave actual evi-
dence of events having occurred. (They at least document that specific individuals are claiming the
events occurred.) Such evidence is highly beneficial in analyzing existing processes and in proposing
NEW Processes.

322

3. Process Definition Templates

Level # Version # and Date
Product Template
Template Type
Name Unique Identifier
Purpose
Comments
Additional States ' Descriptions Part Of
Composed Of
Evolves From Events State Transitions (Event/Step)
External Constraints
Revision History

Figure 3-21. Product Template

3-23

3. Process Definition Rmplates

3.2.3.2 Research Templates

The Research template (Figure 3-22) is the second template under Throughput.

Root {_Foundation |
[S |
| I R SE—
Meta-Class Event | L_’I‘hroughpﬁtl L Support I Constraint |
Class —)IManagement Product Role —)I External
3! Production

Resource Lyl Internal

Figure 3-22. Template Structure (Generic)

Research templates (Figure 3-23) describe the intangible artifacts that result from one or more
interacting events. These templates are a means to capture the fact that there are times when valuable
work is done, but no tangible by-products are created. Examples include surveys, investigations,
experiments, and all other forms of information gathering or evaluation.

As mentioned earlier, you should note that various research efforts often will produce some type of
white-paper, checklist, summary of findings, progress report, or a chronological log of the effort per-
formed. In such cases, the process analyst should model that artifact as tangible, and use the Product
templates. As a general rule, it is easier to analyze, monitor, and model tangible, as opposed to intangible,
artifacts. The Research template exists as an aid in those cases where nothing else will work.

u

3. Process Definition Templates

Level # Version # and Date
Research Template
Template Type
Name Unique Identifier
Purpose
Comments
Additional States * Descriptions Part Of
Composed Of
Evolves From Events State Transitions (Event/Step)
External Constraints
Revision History

Figure 3-23. Research Template

3-25

3. Process Definition Templates

3.2.4 SurPORT TEMPLATES

Support templates (Figure 3-24) consist of Role templates and Resource templates.

Root l Foundation |
R —

I A S YE—
Meta-Class Event I LThm“ShP“tI l Constraint |
Class -)k{anagement Product Role —)l External

L3 Production Research Resource Ly{ Internal

Figure 3-24. Template Structure (Generic)

Support templates (Figure 3-25) add several fields common to both Role and Resource templates:
Additional States/Descriptions, Part Of, Composed Of, and Supported Events.

Composed Of and Part Of define the child and parent relationships, respectively, within support
items. As related in an earlier example, the role of engineering_team might be composed of a
team_leader, primary_engineers, and support_personnel.

The Supported Events field lists all processes, activities, and tasks which require the role or resource.
Usually, only the highest level support relationships are listed; therefore, if a resource is used by all
the tasks within an activity, only the activity needs to be listed as a supported event. Note, however,
that to determine the total set of roles (or resources) required by an event, it is necessary to combine
the roles (or resources) explicitly defined for that event with all those defined for all subordinate
eveats of which it is comprised. Since this is a cross-reference field (binding support templates with
event templates), any explicit reference by an event to a support results in a corresponding reference
from the Support template to that specific event (using the Supported Events field).

As with the Throughput and Event templates, it is useful to have a state attribute associated with the
support item described. In the case of Support templates, any additional states can be detailed in the
Additional States/Descriptions field. As reflected by this set of state terms, a particular person, team,
or department (i.c., roles) may need to be available_exclusively or available_shared for part or all of
an event. These states make such criteria more rigorous and potentially more formal. The
recommendcd default set of state terms is:

* Available_Exclusively. The support item is available for either shared or exclusive use.

* Available_Shared. This item is in use by one or more events, but it is still available for shared
use by other events.

* Not_Available. This item is in use exclusively or is otherwise engaged to capacity and is not
available for further uses (until one or more current uses are released).

32

3. Process Definition Templates

Level # Version # and Date |
Support Template
Template Type
Name Unique Identifier
Purpose
Comments

Additional States/Descriptions

Part Of Supported Events

Composed Of

Revision History

Figure 3-25. Support Template

3-27

3. Process Definition Templates

Disabled. This item is not available for use due to the absence of one or more critical components
needed for this item to function.

Suspended. This item has been declared “not available for use.” Although no critical components

are absent (i.e., the item is not disabled), a decree has been issued to the effect that this item
(at least temporarily) cannot be used by any event.

328

3. Process Definition Templates

3.2.4.1 Role Templates

The Role template (Figure 3-26) is the first of the Support templates.

Root | Foundation |
R
4 4 4 1
woncus | e | (e | S | o |
Class —» Management —)I Product -)I External
—)I Production —)r Research Resource | —»{ Internal

Figure 3-26. Template Structure (Generic)

Role templates (depicted in Figure 3-27) include an Associated Authority field not shown on the
Support template. Such authority is defined in the Internal Constraints template; this field serves as
a cross-reference field between the Role templates and Internal Constraint templates. As discussed
under the Internal Constraint template, the authority associated with roles is represented as the au-
thority for someone acting in a given role to declare that some type of state change has occurred. Ideal-
ly, an activity is modeled as completed when all the tasks comprising that activity are completed. In
certain environments, however, someone in a manager’s role might have the authority to declare that
a given activity is “complete” even though some of the tasks within that activity have not been per-
formed. If such authority exists, it needs to be captured within the process model. This can be done
through the joint use of Role templates and Internal Constraint templates (detailed examples of this
are presented in Appendix A).

Also note that Role templates can be subject to the External Constraints field. Although this is acommon
field shared with Resource templates, its importance differs significantly between these templates (as
does the space allocated). For Role templates, there are likely to be comparatively few External
Constraints, and they can be represented by a single source such as a manual containing position
descriptions, experience required for those positions, and scope of authority.

3-29

3. Process Definition Templates

Level # Version # and Date
Role Template
Template Type

Name Unique Identifier
Purpose
Comments
Additional States/Descriptions Associated Authority

(via Internal Constraints)

and Applicable Events
Part Of Supported Events
Composed Of

External Constraints
Revision History

Figure 3-27. Role Template

3-30

3. Process Definition Templates

3.2.4.2 Resource Templates

The Resource template (Figure 3-28) is the second class of templates under Support.

Root | Foundation |

o
o

A

Meta-Class r—E"e’“ Throughput | r—S“PPOI’t I l_Constraint I
Class —)lganagement » Product Role ~» External
Lblr;roduction L)I Research Ly Internal

Figure 3-28. Template Structure (Generic)

Resource templates (Figure 3-29) contain two new fields: Operational Guidelines/Limits and Required
Supplies/Materials. They provide a larger space for cross-referencing to External Constraints.

Both the Operational Guidelines/Limits field and the Required Supplies/Materials field provide
information that can be of considerable significance with dynamic limitations placed on the availabil-
ity of a given resource. For example, a particular process may require that a delivery_van resource be
available to make a daily run to the post office. Implied in this is the availability of a driver for the van.
Instead of developing a large collection of Support templates to capture such interdependencies, the
required supplies/material can be used to document these necessities.

The Operational Guidelines/Limits field can also be used to document constraints or issues that
impact the availability or usage of a given resource. For example, suppose there was an informal policy
governing the use of a particular machine requiring that no one under the age of 18 be allowed to use
it without supervision. These types of constraints, which might be difficult to capture can easily be rep-
resented using descriptive text. At a minimum, this field can be used as a temporary expedient to cap-
ture constraints that will later be replaced by more formal (and probably more complex)
representations.

As on other templates, any documented policies, procedures, guidelines, or standards can be
represented via the External Constraints field. Also note that when a resource is shared with or used
by a process external to the one being modeled, the logistics of sharing or availability can be captured
using external constraints.

k)|

3. Process Definition Templates

Level # Version # and Date
Resource Template
Template Type

Name Unique Identifier
Purpose
Comments
Additional States/Descriptions Operational Guidelines/Limits
Part Of Supported Events

Required Supplies/Materials
Composed Of

External Constraints
Revision History

Figure 3-29. Resource Template

3n

3. Process Definition Templates

3.2.5 CONSTRAINT TEMPLATES

Constraint templates capture the influences that govern any set of events and simplify the definition
and representation of the corresponding control structure. This guidebook suggests two classes of
Constraint templates (Figure 3-30).

Root F’*‘oundation |

e
I D

Meta-Class Event | Throughputl Support I

Class —» Management —» Product == Role —)l External
L)' Production L)I Research L) Resource L) Internal

Figure 3-30. Template Structure (Generic)

The first class is the External Constraint template. This template can be used to represent controlling or
governing influences exerted on a process that originate from outside the scope of the process being modeled.

The second class of Constraint templates is the Internal Constraints template, and it is used to represent
internal constraints within a process. Internal constraints are primarily modeled as the authority of
various roles to declare state transitions withrespect to events, throughputs, and supports. In all cases,
this class of Constraint templates is associated with one or more roles. The net result of this effort
yields a process model that explicitly (and often more simply) models the influence of management
and authority within a process description.

The Constraint template (Figure 3-31) shares three new common fields (in addition to those inherited
from the Foundation template): Special Form Of, General Form Of, and Constrained Events.

The Special Form Of and General Form Of ficlds designate parent and child relationships, respectively.
These relationships can be of virtually any kind (keeping in mind that the Constraint templates are
used for representing all important constraints on a process readily captured using Throughput, Sup-
port, and Event templates). Two major types of relationships relevant to the Special Form Of and
General Form Of fields are “whole/part” relationships, and “generalized/specialized” relationships.

An example of whole/part relations would be an aircraft: the “whole” of the aircraft is comprised of
definite “parts” such as wings, power plant, and fuselage. Conversely, the “generalized” concept of
an aircraft is an abstraction of the more “specialized” concepts of “propeller-driven aircraft,” “jet-
propelled aircraft,” and “fixed-wing aircraft.” Both types of relationships provide very useful insights
into the relationships between concepts at a higher level and concepts at a lower level. Since
constraints can be virtually any kind, it is worth noting that the relationships used to represent “layers”
of those constraints can likewise be any kind.

333

3. Process Definition Templates

Level #

Constraint Template
Template Type

Version # and Date |

Name

Unique Identifier

Purpose

Comments

Special Form Of
(parent)

General Form Of
(list children)

Constrained Events

Revision History

Figure 3-31. Constraint Template

3

3. Process Definition Templates

Finally, the Constrained Events field is used as a cross-reference to the Event template. Whenever

aneventlists a constraint as applying to that event, the constraint should showa corresponding reverse
reference indicating the event being constrained.

33s

3. Process Definition Templates

3.2.5.1 External Constraints Templates

The External Constraint template (Figure 3-32) is the first class of Constraint templates.

— ———

Root | Foundation |

e
AN

I

M -

Meta-Class I__Event 'Ihroughputl Support I "~ ' Constraint I

Class . -)|Management Product ms Role

—hli’mduction —)I Research -)l Resource .3 Internal

Figure 3-32, Template Structure (Generic)

The primary purpose of the External Constraint template (Figure 3-33) is to capture those controls
that constrain a process but which originate from outside the scope of the current process model. Ex-
amples of possible external sources of constraint include people, policies, regulations, projects, and
weather conditions (when an activity, for instance, has to occur outdoors).

This template is the most expedient means of coordinating independent process models while keeping
inter-process coupling at a minimum.

Suggested states for this template include:

Compliance Unknown. This state implies that from the perspective of a given throughput,
support, or event, compliance with the external constraint has not yet been evaluated.

Compliance Under Evaluation. In this state, external constraint is being actively referenced to
evaluate compliance.

Compliance Achieved. This state indicates that compliance with the external constraint hasbeen
achieved. Typically, this allows corresponding state changes in either throughputs or events.

Compliance Failure. This state indicates that from the perspective of the referenced external
constraint, a throughput item or an event has failed to achieve compliance with the constraint.
This usually either prevents throughput or event state transitions or else causes transitions
into states similar to in_rework, etc.

Compliance Waived. When an external constraint is in this state, its constraining influence is
removed (only temporarily).

In all cases, note that external constraint states are only meaningful with regard to some particular
event or throughput. Therefore, although a particular style guide might be an external constraint for
four different events, the state of that external constraint would always be a function of each event’s

33

3. Process Definition Templates

Level # Version # and Date

External Constraint Template
Template Type

Name Unique Identitier

Purpose

Comments

Special Form Of Additional States/Description
(parent)

General Form Of Constrained Events Constrained Throughputs
(list children)

Constrained Supports

Revision History

Figure 3-33. External Constraint Template

337

3. Process Definition Templates

frame of reference. For one event, the state of the style guide may be compliance achieved, for another
event the state of the style guide may be compliance failure, and for yet another event the state of the
style guide may be compliance waived. Just as internal constraints are always coupled with roles
(discussed below), external constraints always coupled with events, throughputs, or supports.

The External Constraint template also contains the fields Constrained Throughputs and Constrained
Supports. (Although these fields are common with internal constraints, they are given considerably
more space on the External Constraint template. This is because internal constraints are defined in
terms of roles, and will likely have less applicability to non-event issues.) The Constrained Events,
Constrained Throughputs, and Constrained Supports ficlds can be used to facilitate cross-referenc-
ing between External Constraint templates and Event, Throughput, and Support templates. Although
the evaluation of compliance with an external constraint must occur within some type of event, it can
be quite convenient to also detail all the constraints (such as system design standards and coding
standards) that are applicable to a given throughput (such as a software product).

338

3. Process Definition Templates

3.2.5.2 Internal Constraint Templates

Internal Constraints (Figure 3-34) is the second class of templates under Constraint.

— v o c—

Root [Foundation |
| — —
. Y 4 4
Meta-Class — Event Throughput | Support | '—Oonstraint I
Class Management —)[Product —)| Role —» External
Ly Production —4 Research -)l Resource —>

Figure 3-34. Ternplate Structure (Generic)

The primary purpose of Internal Constraint templates (Figure 3-35) is to model various classes of
permission. (It must be emphasized that the use of these templates can be expanded to model all types
of internal constraints.) These templates either make possible or simplify the definition and
representation of the control structures that coordinate and govern various events.

One type of event flow control mechanism discussed earlier describes entry conditions for events in
terms of satisfied exit conditions of other events. This, however, introduces at least two problems.
First, it makes parallelism more difficult to capture. That is, suppose event “B” usually starts once
event “A’ is almost done. Forcing the use of exit conditions could result in a definition that states “A”
must finish before “B” may start. A second problem is exponentially increasing complexity. If dozens
of exit conditions must be satisfied by numerous events before a given “downstream” event can start,
it may be easier to simply describe the downstream event as needing management authorization to
start. You accomplish this by asserting in the entry criteria in an event that commencement (permission)
must be granted by someone in an appropriate role (i.e., a role that has been granted such authority).

The Internal Constraint templates allow the process engineer to define classes of permission, but such
permission does not directly map to events. Instead, Internal Constraint templates define permission
classes associated with roles. Roles, in turn, are one of the Support templates that describe (in combi-
nation with Resource templates) the support items required by events. As implied by the parallel
boxes in Figure 3-35, any event subject to an internal constraint is also matched with an associated role
that can grant (or withhold) the necessary permission represented by that constraint.

At a minimum, any set of templates should define the following set of internal constraints. This list
of permissions serves as a subset of the internal constraints that govern a particular process model.

* Commencement Permission. This permission, when associated with a role, allows people within
that role to grant permission to commence work associated with an event (assuming that all
other entry criteria have been satisfied).

* Suspension Permission. This permission, when associated with a role, allows people within that
role to decree that all work on a given event cease.

3-39

3. Process Definition Templates

Level # . Version # and Date
Internal Constraint Template
Template Type
Name Unique Identifier
Purpose
Comments
Special Form Of Constrained Throughputs Constrained Supports
(parent)
General Form Of Constrained Events Associated Roles
(list children)

Revision History

Figure 3-35. Internai Constraint Template

K)

3. Process Definition Templates

* Recommencement Permission. This permission allows one to authorize those associated with a
ceased event to resume work.

* Cancellation Permission. This permission allows one to cancel work associated with a given
event. Such cancellation is considered to be permanent (whereas suspensions are temporary).

* Resurrection Permission. This permission allows reversing a cancellation decision and
recommencing work in an area that previously had been “permanently” cancelled.

* Completion Permission. Someone in a role which has this permission can decree that the work
associated with an event has been successfully completed (assuming that all other exit criteria
have been satisfied).

* Override Permission. Someone in a role which has this permission can decree that the work
associated with an event has been successfully completed despite the fact that other exit crite-
ria still remain to be satisfied. Similarly, events can be ordered to start even though one or
more entry criteria remain to be satisfied.

* Executive Permission. Someone in a role which has this permission can decree that the work
associated with an event has been successfully completed, and further, they can decree that
currently unsatisfied exit criteria are, in fact, satisfied. Similarly, entry conditions can be
declared “satisfied” and events ordered to start.

Again, the Consortium suggests that all process models establish a basic set of Internal Constraint
templates that include the above internal constraints. Much of what governs the ongoing execution
of a process are people in various roles of authority granting or withholding permissions at various
stages of work. The Internal Constraint templates readily capture and formally defii.e the relation-
ships between these constraints and the other factors discussed (i.€.,external constraints, throughputs,
supports, etc.).

It should be noted that internal constraints, as presented here, do not carry the concept of state: internal
constraints essentially represent the authority of someone in a given role to declare a state change for
an event, a throughput, or a support. To attempt to represent a change of state as itself being subject
to changes of state is an unnecessary complexity that adds little, if any, value. Instead, internal
constraints are matched directly with the states of other items ir the process model (especially event
states reflected by the recommended default set of internal conswuaints described above). If it is
possible for anyone to declare that a state change has occurred, that state change:

* Must be represented as having an internal constraint which represents authority to issue such
declarations.

* Must be represented by binding that internal constraint to an explicit role (defined using the
role templates).

Whenever that role is modeled as participating in a given cvent, that role can declare any of e state
changes for which it is authorized.

It should also be noted that on the Role template the cross-reference field to the Internal Constraint
template allows stating that a particular authority is available to a given role only with respect to an

3-41

3. Process Definition Templates

applicable set of events: a manager with the authority to declare some event types to be complete does
not mean they have the authority to declare all event types complete. If it is necessary to restrict a
role’s use of authority granted by an Internal Constraint template; those restrictions are detailed on
the role template, and not the internal constraint template.

3.3 TEMPLATES AND GRAPHICAL MODELS

The templates are essentially a text-based device for capturing and organizing information relative
to a process, and further details regarding their usage is presented in Section 4. However, when a pro-
cess has been defined using, for example, hundreds of templates, it can be quite difficult for someone
to efficiently use the templates to get a high level understanding of the overall process. To overcome
this problem, the graphical notation described in this section can be used in conjunction with the
templates to provide diagrammatic abstractions of the process model.

This graphical notation consists primarily of objects and relations. As shown in Figure 3-36, there are
four types of process modeling shapes for depicting process objects:

= Events O = Throughputs
<> = Supports A = Constraints

Figure 3-36. Process Object Modeling Shapes

As shown in Figure 3-37 below, these process objects, or elements, can be connected to each other by
four different types of relations. Sequence relations are used to connect one event to another and con-
vey a temporal ordering (e.g., event B happens after event A, but before event C). Inclusion relations
show parent/child or “part of” relations. For example, inspection preparation activity may be “part
of” an overall inspection process. Specialization relations show relationships between the general
form and the special form of something. That is, “programmer” may be a general form, whereas “Ada
programmer,” “C programmer,” etc., would be special forms (i.e., a specialized form of the more gen-
eral term). Finally, reference relations represent any relation between process objects aside from se-
quence, inclusion, and specialization. The graphical form of these relations is shown in Figure 3-37.

Sequence Relations S
Inclusion Relations (static) - - - -»
Specialization Relations o—>
Reference Relations _——
e |
regiop™) =00 =-=--

Figure 3-37. Process Relationship Modeling Shapes

There are several rules that define the use of relationships. Sequence relations can only connect one
event with another event. Static inclusion relations can only connect like elements. For example an
inclusion relation may bind an event to a subevent or a product to a subproduct, but it never binds an
event to a subproduct. Dynamic inclusion relations (valid only for events) combine a set of process
elements as all working in concert within the parent event (examples are provided in the following

342

3. Process Definition Templates

pages). Specialization relations, similar to static inclusion relations, can only connect like elements.
For graphical simplicity, all relations, or arcs, may split or join with other arcs. However, care must
be taken to ensure that ambiguity is not introduced.

Any element can be decomposed either through using the inclusion relation or by indicating that an
expanded depiction of the inclusion relation is detailed on another page. As shown in the following
example, off-page references are indicated by using one of two different conventions. One approach
is to indicate the off-page reference with a double border object that uses a broken or dotted line for
the interior border. Alternatively, an off-page relation can also be shown through explicit use of an
octagon object. Details of using these and additional techniques are provided in the following series
of diagrams and supporting text.

The next five figures (Figure 3-38 through Figure 3-42) show a simple representation of a hybrid formal
inspection process. Some organizations have adopted the use of inspection “SWAT” (Special Weap-
ons and Tactics) teams whose primary purpose is to perform rapid, frequent, efficient, and effective
inspections on specific domains of artifacts. This scenario presented in this set of figures outlines an
example SWAT inspection team process. The first figure, SWAT—D1, shows the highest level view.
SWAT - D2 shows an expanded view of the resources required to support this process. SWAT—D3 is
an expanded view of the process improvement activities, and SWAT—D4A and —D4B show an expanded
view of the inspection activities.

Figure 3-38 is an example of the primary process elements of a formal inspection process. The bold
outline on the formal inspection process event (square) is used to aid a reader in quickly determining
the central component of a diagram. In this example, the constraints (triangles), supports (diamond),
throughputs (circles), and sub-events or activities (squares), are all shown in relation to the bold
inspection process event.

Note that this example shows joining two reference relations from two separate constraints into one
arc that intersects with the inspection process event. Joining arcs in relations is permissible, but only
if the relations are identical (in this case, both are reference relations). Also note that arcs indicate
flow. Hence, “material to be inspected” is shown as throughputs required by the inspection process
event, and “inspected material” is shown as throughputs generated by or released from this process.

However, inspection metrics is shown as an outbound throughput; also, note that there is a slash across
the arc just before the arrowhead. This slash indicates that this is an optional relation to an object that
may or may not exist in an actual instantiation of this model. In this case, the diagram indicates that
inspection metrics are an optional output of the inspection process.

The dotted-line arcs show inclusion relations. These relations on SWAT—D1 indicate that the inspection
process is composed of (or includes) three major process activities: process improvement, the inspec-
tion activities, and causal analysis. For inclusion relations, the arrow always points from the child to
the parent.

Finally, note on SWAT - D1 that three of the elements have dotted-line interior borders. One of these
is the support (diamond) “Inspection resources,” both the others are events (squares): “process im-
provement” and “inspection activities.” The dotted-line interior border indicates that an inclusion
relation exists but is shown on another page. In all cases, each such element should have an associated
unique identifier that tells the reader which page has the expanded diagrams. As shown on
SWAT--D1, expanded diagrams can be found on figures labelled SWAT—-D2, SWAT-D3, and
SWAT-D4A.

3-43

3. Process Definition Templates

Policy &
Procedure

Material
to be

Inspected

Inspected
Material

(SWAT-D3) (SWAT—D4A)

Figure 3-38. SWAT-D1

Any support, throughput, event, or constraint can be diagrammatically expanded using hierarchical
decomposition techniques similar to that shown in SWAT —D2 (Figure 3-39). In this example, inspec-
tion resources are shown as a support that includes, as indicated by the dotted-line inclusion relation,
super moderator resource(s), inspection team resource(s), and facility resource(s). Additional inclu-
sion relations on the diagram show that inspection team resources are composed of moderator(s),
reader(s), inspector(s), scribe(s), and author(s).

The inspector element has two specialization relations connecting to it from the two types of inspectors.
This relation indicates that the general concept of aninspector may be used insome parts of the model;
however, in actuality, inspectors are either key inspectors or regular inspectors.

SWAT-D2 also shows that inclusion relations should explicitly show cardinality. When indicating
cardinality, there are at most two pairs of numbers (separated by a “:”) used to indicate the cardinality
of the inclusion relation. The first pair of numbers indicates, from the child’s perspective, the mini-
mum and maximum number of parents required. The second pair of numbers indicates, from the par-
ents perspective, the minimum and maximum number of children required. Typically, one of three
values is used: 0, 1, and N. Whenever the first and second number are identical, only a single instance
of that value is used (so, “00:11” would simply be shown as “0:1").

3. Process Definition Templates

Inspection
Resources
]
[]
Fe-c--"reseecsn==- I "
: v :
' 11 « 1IN ' 0l
Super /" Inspection
Moderator Team
[]
[]
pPomeseccnaan- R R R mmecemcccana qesseaceom e~ =
[]]]] (]
[]]
' IN:1 1 + IN:36 ' IN: ‘ON:1N

Moderator 0 Inspector ‘

Figure 3-39. SWAT—D2

Cardinality labels on the SWAT—D2 diagram indicate the following. Look at the inclusion relations
indicating the roles that make up an inspection team. The cardinality labels show that for a moderator
to exist, there must be at least one inspection team but that one person may be the moderator of multi-
ple (or “N”) inspection teams (1N:...). From the perspective of an inspection team, there must be at
least one moderator and at most one moderator for that team (...:1). For a reader to exist, there must
be at least one inspection team and at most one inspection team (1:...). In effect, this states that the
same person cannot simultaneously be a reader on more than one team. From the perspective of an
inspection team, there must be at least, and at most, one reader for that team (...:1). For an inspector
to exist, there must be at least one inspection team, but the same inspector can simultaneously partici-
pate on multiple inspection teams (1N:...). However, from the team perspective, each team requires
at least three inspectors but is not allowed to have more than six inspectors (...:36). This is an example
of where the more general form “N” has been replaced by explicit values; if either of the numbers re-
quires two or more digits, a comma should be used to delimit the values. As shown in SWAT-D2, the
cardinality of the Scribe is identical to that of the moderator. Finally, from the perspective of an au-
thor, the author requires zero inspection teams (that is, a person is an author of something indepen-
dent whether an inspection team exists or not), but they may have authored products for “N” or

3. Process Definition Templates

multiple inspection teams (ON:...). From the team perspective, there needs to be at least one author
(whose work is being inspected); but there may be multiple authors, such as when, for instance, an
entire design group develops one section of a high-level design document (...:1N).

Again, Figure 3-39 only shows the composition of one support object. Similar diagrams can be used
to show the composition of anything. Furthermore, the decomposition need not necessarily be hierar-
chical. Certain items might be better represented by using a network or directed graph. In all cases,
astrict ordering of elements is not required. However, each decomposition will typically proceed from
a single, common root. ~

SWAT - D3 (Figure 3-40) is an expansion of the process improvement element shown on SWAT-D1
(Figure 3-38). As with SWAT—D1, this diagram gives a high-level view of the resources (diamond),
constraints (triangle), throughputs (circles), and events (squares) that participate in this subprocess.
Different from SWAT-D1, however, is the use of a large dotted-line box to show an immediately ex-
panded view of the composition of the event “process improvement.” This too is an inclusion relation
(indicated by the dotted-line boundary), but because it defines a region (i.e., a box) it indicates a dy-
namic view of the elements included in “process improvement.” The only difference between a dy-
namic view of an expanded object (shown on SWAT—D3, SWAT—D4A, and SWAT —D4B) and a static
view (shown on SWAT —D1) is that the dynamic view connects the events with other events using se-
quence relations. That is, a static view states that a set of child events are included in a parent event,
but it does not convey any information about in what order the child events might occur. The dynamic
view both states that a set of child events are included in a parent event, and that the child events occur
in some sequence or order. Additionally, as shown on SWAT—D3, one of the child events is shown
with a bold outline to indicate that it is the waiting, default, or initiating activity in a series of activities.
This is especially useful when (as shown in SWAT—D3) the events are essentially cyclic, and therefore
there is no obvious starting place.

Note that SWAT-D3 also shows a pair of inclusion relations (terminating at the event, “hold meeting”)
and the use of optional reference relations. For instance, as an outbound throughput from the process
improvement event, there is optional output of “new policy proposals.” Also note the double-headed
arc connecting the “summarize recommendations” event with the “recommendations database”
throughput. In this example the double-headed arcindicates that the event “summarize recommenda-
tions™ has the option of getting data from the recommendations database, and also has the option of
outputting data to the database.

SWAT-D4A (Figure 3-41) and SWAT—-D4B (Figure 3-42) together show an expansion of the
“inspection activities” event. One main difference seen in this pair of diagrams is the use of octagon
off-page connectors. The octagon shape is used to allow what is essentially a single picture to be shown
across multiple pages. Note that any of the relations may enter into and exit from an off-page connec-
tor. Also notice that the off-page connectors are bidirectional. They may show outbound relations
from the current page to a remote page and simuitaneously show inbound relations from the remote
page to the current page (as is shown on the off-page connector “SWAT_J2” on diagram SWAT—-D4A
[Figure 3-41]).

Again, the event expansion diagram shows the internal details of the “inspection activities” event.
Since this pair of diagrams show dynamic process characteristics (that is, sequence-ordered events)
the inclusion region is used in lieu of simple inclusion arcs. Typically, when a picture must be spread
across multiple pages, one of those pages serves as the root diagram, and all other pages are either
directly or indirectly bound to the root diagram by relations connecting through off-page symbols. In

3-46

3. Process Definition Templates

Inspection

Minutes

When
Needed,

Schedule
Meeting

New Policy
Proposals

1:01 . « I:IN
Review Solicit
Status New
Recomm. Recomm

)

\ e

‘a
Database

Hold
Mgmt.
e o Present.
Figure 3-40. SWAT-D3

Schedule
Present.

3-47

3. Process Definition Templates

Material
tobe

Inspected

—>» Planning

l
|
|
|
| toteatr
I
I
I
|
|

Policy &
Procedure

|
4

Inspection

Activities

-

7~
~N

Overview

]
<D

Inspection
Metrics
/ .
-~
_ Inspected
Material

SWAT J1

(SWAT-D4B)

SWAT _J2

(SWAT-D4B)

Figure 3-41. SWAT-D4A

3. Process Definition Templates

SWAT_11

Figure 3-42. SWAT-D4B

3-49

3. Process Definition Templates

this example, SWAT —D4A is shown as the root diagram, and SWAT—D4B shows detail information
for which there was no room on SWAT —D4A. Note that the use of off-page connectors requires each
connector to have its own identifier (such as SWAT J1) and that all such connectors always exist in
multiples (i.c., you would never have only one). For example, SWAT _J1 is shown on SWAT—-D4A as
a source connector, and it is also shown on SWAT_D4B as a destination connector. (Although not
shown in this example, it is permissible to have multiple sources and/or multiple destinations, but this
is discouraged as it tends to reduce, as opposed to improve, readability.) In all cases, an off-page
connector must connect to someplace; therefore, you always have at least two diagrams using that
connector’s unique identifier.

To enhance readability, relations arriving at or departing from off-page connectors should show the
symbol of their destination or source elements (respectively) and a count of those elements if a joined
arcwas used. On SWAT—D4A, the “preparation” event has a sequence relation that terminates at the
off-page connector SWAT _J1. At the off-page connector, the relation is labelled with a small box indi-
cating that on the remote diagram this relation terminates at an event. (To the knowledgeable reader,
this simply confirms what is, in fact, a rule: sequence relations can only connect events with other
events.) Additionally, “preparation” also has a reference relation that terminates at the off-page con-
nector SWAT J1. In this case, the reference relation indicates that on the remote diagram the relation
refers to a throughput element (represented by the circle). At the off-page connector SWAT_J2 on
diagram SWAT D4A, a reference relation from “schedule” shows that it connects to two events (indi-
cated by the small square with a “2” inside) on the remote diagram. Note that the off-page connector,
in addition to its own unique identifier, also shows exactly which diagram the references refer to.

Figures 3-41 and 342 are a series of examples that show graphical depictions of process architectures
that are consistent and compatible with the set of process templates described earlier in this section.
Graphical renderings are an ideal way to quickly and efficiently model process elements and their
relationships before proceeding with the more detailed work of filling in the templates. Additionally,
even if templates were used prior to developing a graphical model, there is a direct mapping between
the information captured on the templates and a graphical depiction of that information. Consequent-
ly, if you want to have a graphic-based and a text-based representation of your process, you can use
the graphical notation prior to, concurrent with, or subsequent to your use of the process templates.
If you will be doing process modeling without the assistance of automated tools, then the chief value
of the graphical notationis likely to be in designing and altering initial architectures for a process mod-
el. After the graphical process architecture has stabilized, the templates can be populated with details
and bound with each other.

3-50

4. TEMPLATE USAGE

The material in this section provides information and guidance on template usage. Section 4.1
examines using templates to support developing process guidebooks. Section 4.2 extends this discus-
sion by examining template support of general process definition and modeling. Section 4.3 shifts per-
spective by focusing on the notation itself. This section introduces the concept of representative power
and examines how the template graphical extensions increase representative power. Section 4.4 pres-
ents an example template usage scenario. Section 4.5 discusses tailoring and improving the usability
of the templates, and Section 4.6 presents a simple example of using template-based process representa-
tions to support process improvement efforts. As indicated in Figure 4-1, while reading this section you
may find it advantageous to regularly refer to the template-based example presented in the appendixes.

A)
Introduction Templates

v

@
Overview and
Foundation

©4)

Figure 4-1. Guidebook Organization View 4
4.1 PROCESS GUIDEBOOKS

Software process guidebooks (SPG), such as the Consortium’s Evolutionary Spiral Process or Reuse
Adoption Process guidebooks, are designed to be shared by all software developers in an organization,
division, or team. The SPG documents current and planned software development policies and proce-
dures found to be most suitable for the organization as a whole, and it is typically written in natural
language.

Improved communication is often achieved through greater use of any of the following: unified and
consistent term definitions, section formats, decision tables; forms and templates; activity diagram
types; and software process and product matrix collection tables. Predefined forms and table types,
for example, can then be used to check the consistency and “usability” of the process. The SPG pro-
vides a mechanism for the software developer to reason, reference, discuss, and follow work descrip-
tions. Practicing the process documented in the SPG also allows verification of process correctness
and completeness.

41

4. Template Usage

SPGs can be of greater or lesser degrees of formality. A formalized SPG implies a software process
model (SPM). An SPM is essential for mapping between the SPG and the representation of a process
using a definition or modeling notation. An SPM serves as both a conceptual model for the software
process developer and as an internal model for the complete and consistent implementation and mod-
ification of the SPG. The SPM should describe possible relations among different kinds of artifacts
in the software process, possible activities and their sequence in a process, and possible partitioning
of software products.

Two well-known process models are the Waterfall model and the Spiral model (the basis of the
Consortium’s Evolutionary Spiral Process). Each software organization may have its own SPM that
reflects its software development experiences, procedures, policies, and conventions.

A process notation (PN) serves to represent the concepts, guidelines, and heuristics of the SPM to the
software engineer. It should map to the software development environment so that a process repre-
sented using a PN can be interpreted, maintained, improveu, and (ideally) used to support the
development of process or project management plans.

The overall sequence of events that characterize an organization’s ongoing efforts to develop and
improve SPGs is as follows:

1. Analyze the existing process by building an abstract SPM of the process elements.
Extend the SPM by adding additional process details (throughputs, supports, etc.).
Analyze the model and use it as a foundation for writing an SPG.

Modify the SPM based on insights gained while developing the SPG.

Increase the formality of the SPM.

Update the SPG to reflect the latest SPM.

Use the SPG té develop software development project plans.

Analyze project metrics and evaluate possible areas of process improvement.

¥ ® N o0 n s wN

Use a variety of SPMs to evaluate alternative processes and potential process improvements.

b
e

Construct a composite SPM of approved changes.
11. Gotostep3.

These steps can result in defining an increasing set of reusable process assets that eventually can be
used to support the implementation and execution of Environment-Based Process Management
(EBPM) tools (see Figure 4-2).

Specificprojects are instantiated from the model. The instantiation bounds the sequence of events and
constrains that the throughputs and supports permit when forming a project plan. A project planner
will then use this information in combination with information from the process execution environment
to allocate resources and determine a feasible schedule. When a project plan has been instantiated from
the process model, it is ready for enactment.

4-2

4. Template Usage

Meta-Planning

[———— Execution

Artifact
Manifest

instantiated for a project

Execution
Environment

Process
Manager

© Product History

Figure 4-2. Environment Based Process Management Concept

During enactment, the project manager issues work orders into the execution environment in accordance
with the schedule and monitors the project’s execution. Data collected from the evolution of events
and products form the basis of software process and product measurement. These metrics support
process monitoring and eventually contribute to the insights that lead to ongoing process improve-
ment. Continuous and measurable improvement is central to advancing software maturity, and such
efforts can be facilitated by the combined use of process representations to construct SPMs which, in
turn, serve as the foundation for SPGs.

It should be noted that one of the key advantages to template-based development of process guidebooks
is the improved potential to automatically construct and print process guidebooks directly from an
electronic inventory of templates. Since the templates are tolerant of free-form descriptive text, comments
within, for example, entry conditions, exit conditions, description fields, etc., can all be reformatted and
presented in guidebook format.

There are several advantages to this approach, especially if a versatile automated tool is used to maintain
and update template-based process representations. First, this approach potentially removes the need
to maintain both the guidebook and its underlying model. When guidebooks can be derived directly
and automatically from the model (or templates), only the templates need to be maintained. Second,
the templates can be automatically checked for consistency, completeness, conformance to structure
rules, etc. In effect, the process model can be “compiled” and checked for “syntax” errors. Guidebooks
would only be generated if the process model “compiled clean.” Third, and possibly most important,

43

4. Template Usage

the process templates and associated graphical models can be used to train personnel in an organization’s
process. Training directly out of a multi-hundred page free-text process guidebook is often inhibited
by a plethora of details and the resulting extremely low-level perspective. The templates impose a nat-
ural organization to this information and provide explicit layers of abstraction for improved conceptu-
al overview. When combined with graphical depictions of template relationships, even complex
processes can be more readily and efficiently taught.

4.2 PROCESS MODELS

This section continues to look at the use of process models but from an increasingly larger perspective.
One method for analyzing the various potential uses of f rocess models is to examine models from the
perspective of support for process improvement. This is a function of how well the model facilitates
planning deliberate process change.

Continuous process (re)definition and improvement can occur at a variety of levels within an
organization. Each process level, or layer, is examined, and related models are developed through
successive layers by repeatedly (re)defining the model to produce greater detail and refinement of
information. The concept of refinement maps abstractions of the process model from one layer to the
next. For example, the refinement of the process model that represents the corporate’s process policy
canbe mapped into the process layer of the division. In the same way, the process model can be further
refined, or instantiated, to produce the project model. Each of the refinements inherits the essential
process definitions that support process benchmarks and metrics and allows the collection of
process-specific data that can be used in a program of corporate process improvement.

4.2.1 PROCESS LAYERS

The process definition layers, presented in Figure 4-3, are adopted from the Boeing Software Technology
for Adaptable Reliable Systems (STARS) project. The layers are:

* Organizational Layer. In this layer, the process model is embodied in textual descriptions
collected into corporate policies and procedures.

e Architectural Layer. Here, the process model is described in a relatively rigorous graphical/
textual notation such as ETVX and SADT.

* Design Layer. This is where detailed information is added to the architectural model, yielding
detailed process designs and the instantiation of project-level process representations.

s Enactment Layer. This is the layer where one or more actual or virtual machines initiate and
monitor process tasks.

¢ Execution Layer. These are the environment(s) where process tasks are performed.

As described above, process improvement can be facilitated by continuously refining the process model
and forming more defined or specific layers as the model from one layer is instantiated to form the
next layer. In Figure 4-3, on the side of the diagram, you see process description, process modeling
notation, and EBPM,; these are the three technologies that support the five layers of process development.

Central to each of these layers are the events’ descriptions depicted at that layer of abstraction. Events
are constrained and organized with respect to each other largely though the information relayed in

4-4

4. Template Usage

Figure 4-3. Process Definition Layers

the Entry Criteria and Exit Criteria fields. The information related at various levels of the process
model will vary as a function of the information necessary to describe that level of construction. In all
cases, the tradeoff is always between abstraction and details. Nevertheless, when constructing tem-
plate-based models of the different layers, there are at least six kinds of information that can be placed
in the Entry Criteria and Exit Criteria ficlds of the Event template. What you present and how you
present it, depends upon the process layer you are working upon. The six kinds of information are:

Throughput Produced. At higher levels, a text-based approach will communicate just the name
of the throughput and its description. At progressively lower levels, the process engineer may
apply state information by listing the throughput with its state. At progressively lower levels,
the analyst may elect to express entry or exit criteria on throughputs using first-order predicate
calculus.

Roles Required. At higher levels, roles are described in isolation and are simply referenced by
the event descriptions. At progressively lower levels, it becomes increasingly important to con-
vey the authority associated with the roles and how that authority influences or constrains the
flow of events.

Resources Required. At the highest levels, resources are likely to be defined using abstract or
collective terms. For example, a process may require the resources of a particular division but
without clarifying which resources within that division are specifically necessary. With increas-
ingly lower models, divisions’ references, for example, would be broken out to department ref-
erences that may, in turn, be broken out into group or team references, etc. At the enactment
layer, it becomes necessary to bind, for example, the names of actual people with roles they
are scheduled to perform.

Coordination Required. In the entry(exit) criteria, coordination constraints provide a means to
establish coordination relationship between events that otherwise have nothing in common.
Coordination references will tend to be more common within higher level models and less com-
mon as details become available or expressible Ideally, at the enactment level coordination can
be defined entirely in terms of throughputs, supports, or related events and their respective states.

4. Template Usage

* Authorization Required. Similar to coordination required, authorization required will tend to
be more common on higher-level models. Authorization, especially as an external constraint,
is a means to simplify the expression of relationships in highly abstract representations of a
process. As the representation becomes less abstract, authorization can be replaced by, for exam-
ple, references to conformance with published standards, successful completion of evaluations or
inspections, etc.

* State Information. State information will likely become increasingly important as models are
refined todeeper levels of detail. Events, throughputs, products, and constraints can all poten-
tially have state information associated with them. For the enactment layer, and especially for
the execution layer (if EBPM is being employed), state information can become a significant
part of the model. Typically, however, state information implies detailed information; there-
fore, it is likely to become progressively less important when modeling higher-level processes.

The templates are designed to easily capture informal descriptions of the process but to do so in a way
that automatically organizes that information to facilitate analysis, updates, and the construction of
graphical models. The material in this subsection is intended to encourage the process engineer, when
using the templates, to consider the advantages of deferring process details until lower level models
are constructed. Simultaneously, the process engineer also needs to think forward and prepare for the
next cycle of more detailed, or formal, process definition. As understanding of the process increases
for the process engineer, he will migrate information in increasing detail between and among
Throughput, Support, Constraint and Event templates. As the process depiction becomes more de-
tailed, the process information will likely evolve into state-sensitive relationships between events,
throughputs, etc. This entire effortis a process of constructing and maturing organization process defi-
nitions and, over time, using this information for organizational process improvement. Software engi-
neers may start with undefined processes with unclear constraints; but through the systematic
application of process definition and modeling, software engineers can evolve into an environment
constrained by known, defined, and measured processes.

4.3 REPRESENTATIVE POWER

Regardless of the notation used for defining or modeling a process, or the level of the process being
captured, each notation (and supporting methodology) can be viewed from the perspective of its rep-
resentative power. The representative power of a process description reflects the factors of granular-
ity, practicality, redundancy, modularity and information hiding. These factors are not mutually
exclusive and, to greater or lesser degrees, each one overlaps with all of the others. Nevertheless, these
are key factors that a process engineer needs to consider when matching the level of a process model
with an appropriate process modeling strategy.

4.3.1 GRANULARITY

Granularity is the degree of detail depicted in a process description. The amount of effort necessary
to support process modeling grows rapidly with increased granularity. If not automated, growing cross
reference information increases the expense of process management and coordination. Granularity
should be gradually increased with increasing understanding of the process. Note that it is not necessary
tomaintain the same level of granularity for the whole process model. For example, the basic repeated
routines may be defined in more detail than others: i.e., important and well understood process
elements can be defined with increased granularity.

4-6

4. Template Usage

For templates, granularity can be increased in two ways: by refining the template class structure to
describe more specialized process elements or by using the parent-child (inclusion) relationships of
the existing templates to create hierarchies of finer grained objects. Typically, increased granularity
is a function of iteratively increasing detail.

The capability to represent the decomposition hierarchy of process elements is an important
characteristic of event definition templates, €.g., the parent-child relationships in the proposed set of
templates. Both the management template and the production template is expected to support a tree
of subactivities through its parent-child relationships—the deeper the tree becomes the higher the
granularity. A similar situation exists establishing decomposition hierarchies within each and all of the
other templates. This ability supports both a top-down, or a bottom up process modeling strategy, de-
pending on whether you intend to extend your models through adding greater detail, or through
distilling progressively more abstract characteristics, respectively.

4.3.2 PRACTICALITY

Practicality is the sum of the degrees of ease of use, ease of understanding, ease of implementation,
and applicability to the existing process. The proposed template set represents a level of granularity
deeper than that currently practiced by most of the software industry. The practicality of the scheme
depends on the ability of the software engineers to follow the process defined to the level of detail in
the templates. This ability relates to the size of the organization, the technical level of the organiza-
tion, the degree of formality applied, and the amount of automatinn available to manage the details.
These considerations encourage simplicity. On the other hand, perceived discrepancies between the
real process and the model discourages its use. This leads to complexity which conflicts with ease of
use and implementation. Practicality requires the process designer to strike a balance between
complexity and understandability.

Initially, keep the number of fields in the templates to a minimum. Avoid purely abstract process data
and concentrate on that information that leads directly to process analysis, guidance, and support. For
example, include fields that can be used to generate activity checklists. Where possible, use automation
to manage details and to support analysis of template or process interrelationships.

The ability to represent or model an existing process depends upon existing process descriptions, how
dynamic the process is, and whether automated tools exist to support the development and analysis
of process representations. Process models are dynamic and change enormously before they become
stabilized in a software development environment. One risk-mitigation-based approach is to use a spi-
ral process that cyclically performs process analysis, definition, modeling, usage, and assessment
which then transitions back to process analysis and the beginning of the next cycle. A process model
needs to be used, evaluated, and refined before becoming a fixed process asset. You might begin with
a subset of the templates and then expand the number of templates and the level of detail as your un-
derstanding increases. Similarly, you can begin with a high level definition of the existing process, then
cycle through process refinement, making liberal use of the graphical notations to rapidly build and refine
alternative views of the process architecture and its principle elements. Using this approach, process
definition and modeling can become an important step in an overall program of process improvement.

4.3.3 REDUNDANCY

Redundancy is the amount of overlapping information in one process description. In theory, it is possible
to design the templates so that each piece exists in one and only one place in the template and that

4-7

4. Template Usage

cross-references are used to tie them together. In practice, any paper-intensive approach becomes
progressively more difficult to use as the number of pages increases. Large volumes of paper typically
require the reader to constantly flip between pages in order to understand the relationships and devel-
op high-level understanding. This problem can be mitigated through the use of, for example, “hyper-
text” based tools. A template browser can be easily implemented using hyper-text links to navigate
the cross-references. Additionally, in cases where a guidebook is automatically generated from pro-
cess definition templates, it may be desirable to deliberately allow redundant information within the
guidebook so as to improve guidebook usability for the reader.

Another redundancy issue is consistency. As soon as redundant information is introduced, we create
the possibility that the information will not be consistent. For example, consider a set of parent-child
relationships where a child is not included in the list of its parent’s children. Increasing the redundancy
in a process design may contribute to its readability, but it increases the overhead necessary tovalidate
the design’s consistency. Again, automation can be useful by supporting analysis which identifies
inconsistencies in a process definition.

4.3.4 MODULARITY AND INFORMATION HIDING

A process provides the ability to represent a process fragment (or activity) as a self-contained unit
similar to a procedure in an Ada package. The engineer can treat the description as a reusable process
asset, i.e., he can compose existing process fragments to form a new process. Just as an abstract
datatype is one way to encapsulate a generic algorithm, a process fragment can encapsulate an activity.

A module of a process is defined in terms of a set of activities or working stages for software development.
The process description provides the opportunity to group a set of activities into a single super-activity
or to decompose an activity into a set of subactivities. The process modeler needs to provide the de-
scription of interfaces between this activity and its subactivities and the interface between two activitics
which support the modularity of a process description. -

The proposed templates use the event meta-class as one encapsulating mechanism. Generally, the
“interface” of an event is a function of its entry criteria and its exit criteria. If two process fragments
have identical entry and exit criteria, then they at least have the potential to be substituted for each
other. Another advantage to modularity and applicable to the existing template design is that modu-
larity offers a consistent means (via interfaces) to automatically search, retrieve, and match related
templates from a process fragment library.

4.4 TEMPLATE USAGE SCENARIO

The preceding material has presented a discussion on a variety of principles important to process
representation. However, understanding is based upon both principles and practices. Therefore, this
section gives an example of how you might proceed with practicing process definition and modeling.
This is a recommended approach, but by no means is this the only approach. It can serve as a good
point of departure for an organization that does not have a history of or strong preference for using
a different technique.

There are avariety of ways that the templates can be used to perform process definition and modeling.
It is highly recommended that regardless of the approach selected, there should be some element of
cyclic or top-down refinement. A relatively low-risk, cost-effective approach to building process

4. Template Usage

models is to initially build a complete—if high-level and simplified—graphical representation of the
process. When this has stabilized, the templates can be used to capture increasingly detailed informa-
tion. This enables a greater degree of detail to be gradually introduced and a more progressively ex-
plicit and complex model to be constructed. The overall model is then cyclically extended to include
progressively more information in both the graphical and template-based representations. The example
scenario described below follows this approach.

4.4.1 Activity ONE: DEFINE EVENT RELATIONSHIPS

The organization and relationships between the events that comprise a process is critical to defining
and modeling that process. Although you can build process representations that do not include roles,
resources, or products, it is essential that all representations capture the ordering (or partial ordering)
of events. The tasks within this first activity define a suggested approach for capturing events and their
interrelationships.

4.4.1.1 Task 1: Build an Indented List of Events

The first step of the first cycle is to simply build an indented list of events. The purpose of the indentation
is to reflect the organization of higher-level events and their subevents. For each item on this list, you
provide a unique identifier and a brief explanation of the event’s purpose and description.

At this stage, it is sufficient to attempt to define only the first two or three layers of the domain of interest.
The first, or highest, layer defines the major processes occurring within the domain. Processes are dis-
tinguished from activities in the sense that a process is a perpetual or ongoing event whereas activities
have definite start and stop times. For example, in a particular domain there is likely to be a management
process, an engineering process, and a quality assurance process.

The second layer defines the primary activities that comprise each process. Activities similar to the
management process include:

¢ Perform cost/benefit analysis.
» Evaluate alternative solutions.
e Construct PERT chart.

At the third layer, list the primary tasks that comprise each activity. For example, the “evaluate
alternative solutions” activity might decompose into:

e “Evaluate commercial solutions.”
e “Evaluate alternative in-house solutions.”

e “Evaluate risk of doing nothing.”

4.4.1.2 Task 2: Build a High-Level Graphical Model of Events

Using the indented list as a reference, construct a high-level model based upon the graphical notation
discussed in Section 3.3. This model will contain one type of object (events); and although all four types

49

4. Template Usage

of relations might be needed, the most likely relations will be inclusion (to show decomposition of
events) and sequence (to show ordering of events). Generally, the indentation levels on this list should
capture the majority of the parent/child or inclusion relationships.

4.4.1.3 Task 3: Establish a Template for Each Event on the Indented List

For each item on the indented list, develop a useful, consistent, and ideally intuitive naming convention
for constructing unique identifiers for the listed item. Transfer this and other basic information to an
appropriate template (i.e., a Management or Production template). Fill in any other fields with the
information already known (e.g., the Version # and Date fields, the Purpose field, and Comment
field).

4.4.1.4 Task 4: Identify Event Abstractions

Each template has fields for noting relative event abstractions by using the Child Events and Parent
Event(s) fields. On both managerial and production templates, note the parent and child events. The
graphical model developed in Task 2 of this activity should provide direct insights, though tracing in-
clusion relations, into the parent and child relationships needed by the templates. Detail this two-way
relationship for all events.

4.4.1.5 Task 5: For Each Nontask Event, List All Additional States

Events can have the default state of in_progress expanded into an enumerated set. Consider each
event and evaluate whether it is necessary to expand the number of states used to describe that event.
If so, provide a state name and a brief description. (Note: The list of possible states can be adjusted
and refined at any time; hence, it may be more efficient to initially use just the default states.)

4.4.1.6 Task 6: Describe Internal Processing

Anevent’sinternal processing or flow s the principle description of the work that characterizes it. This
description is done in terms of logical flow (using if, then, and, or, not, while, repeat, until and similar
logical constructs) of activities, tasks, and steps. Note that lowest-level work (or “leaf” events) can be
likewise described, except that terminal events, by definition, do not contain subordinate events (i.e.,
these are atomic events).

A simple example of a logically described work-flow is:

Step1:do...

Step 2: commence Activity-Al and commence Activity-A2

Step 3: do...

Step 4: if Activity-Al::In_Testing then
Step 4al: do...
Step 4a2: commence Activity-A3

else

Step 4b1: do...

Step 5: when Activity-A2::Completed
Step Sa: commence Activity-9

Step 6: if Activity-Al::Suspended then
Step 6a: goto Step 3

Step 7: do...

410

4. Template Usage

It is not necessary to precede each line with a “tag” or step number. However, tags greatly facilitate
discussion and are convenient for logically describing certain forms of process flow. (Note: The “goto”
statement is as undesirable here as it is in conventional logic programming.) If there is sufficient famil-
iarity the conventions of logic-based flow charts, a more formal and more graphical depiction can be
made of the events’ internal processing.

4.4.1.7 Task 7: Describe Event State Transitions

Describe any event state transitions as a reflection of the internal process flow just described in the
preceding step. One approach for defining state transitions is to use “:=" as a state assignment operator,
then intersperse such assignments within the process flow description.

Alternatively, a separate list can be built explicitly describing at which step in the work flow the state
transition occurs. A convention should be established and used throughout. In this guidebook, the
notation “::” is used to represent a particular item in a given state.

Examples of using this convention include:

Step 1: Do...

Step 2: Set state of Some_Event to Some_State

Step 3: Do...

Step 4: If Some_Other_Event::Some_Other_Event_State then
Step 4al...

else
Step 4bl...

4.4.1.8 Task 8: Define Entry and Exit Criteria

For each event (from top to bottom) define the entry and exit criteria in terms of event states. Entry
conditions are defined in terms of the state of external events, and exit conditions are defined in terms
of the state of internal events (on rare occasion, the state of external events).

For example:
E Conditi
(Activity-A::Complete and Activity-B::Complete) or
(Activity-C::Nearly_Done)
Exit Conditi

(Step-12::Complete and Activity D3::Complete)

As the entry and exit criteria are defined, assure that they are consistent with the implications of the
graphical model built in Task 2. If need be, update or alter the graphical model as insights are gained
from ongoing analysis and the effort of filling in the templates.

4.4.2 Acrtivity Two: DEFINE EVENT THROUGHPUTS

Having a first pass at an event-based model, the next activity is to expand both the graphical and
template-based information describing that model. One of the primary purposes of processes is the

4-11

4. Template Usage

creation or modification of a product or service that justifies the need for the process. Therefore, the
second activity in this suggested approach is to expand the template-based definition to include
Throughput templates. Throughputs, abstractly speaking, are anything (tangible or intangible) that
evolve through one or more events. Though typically throughputs are products, they can also be used
to represent research.

4.4.2.1 Task 1: Build an Indented List of Throughputs

As with the prior cycle, the first step is to build an indented list. However, this time the list will consist
of throughputs. To construct it, note the significant products or research evolving from work per-
formed in the domain being modeled. Also attempt to develop a useful convention for developing
unique identifiers.

An example of an indented product list is:

Software_Product
Software_Source
Software_Binary
Technical Documentation

Administrator Guide
User Guide
etc.

An example of an indented listing of research throughput is:

Investigate Machine Performance
Investigate Bus Throughput
Test Internal Bus
Test I/O Bus
Investigate CPU cycle time
Investigate Disk Access
Test Hard Disk
Test Floppy Disk
etc.

4.4.2.2 Task 2: Extend the Graphical Event Model to Include Throughputs

Using the throughput indented list as a reference, extend the event model using the graphical notation
discussed in Section 3.3. This model will now contain two types of objects (events and throughputs).
Although all four types of relations might be needed, the most likely relations will be inclusion (to
show decomposition of events), sequence (to show ordering of events), and reference (to bind
throughputs and events to each other).

44.2.3 Task 3: Establish a Template for Each Throughput

For each item shown on the indented list (and added to the graphical model), transfer the basic
information to an appropriate template (i.e., either a product template or a research template). Fill
in any other fields that information is already known (e.g., the Version # and Date fields, Purpose
fields, and Comments fields).

4-12

4. Template Usage

4.4.2.4 Task 4: Identify Throughput Abstractions

There are spaces on the templates for noting parent/child relations between products and subproducts
and research and subresearch. Using the graphical model as guidance (specifically, throughput inclu-
sion relations) use the Composed Of and Part Of fields to document these relationships to whatever
depth is necessary. (Note: These relationships will also closely follow the indentation levels in the
throughput indented list.)

4.4.2.5 Task 5: Identify Any Additional Throughput Item-Specific States
Throughput items come with the following default set of states:

¢ Unauthorized

* Authorized

¢ In Progress

* InRework

e Disabled

* Suspended

e Cancelled

e Completed

For each Throughput, Product, or Research template, add any additional states that are necessary or
useful for defining relationships between throughput and events.

4.4.2.6 Task 6: For Each Event, List All Throughputs °

For each of the Event templates, list in the Throughputs column all throughputs generated or
manipulated by that event. Processes will typically reference higher level throughputs, and tasks will
reference lower level throughputs. If meaningful, also indicate whether a given throughput, within a
given event, is required or optional. (The graphical model can help you confirm you’ve documented
all the relationships; the graphical model should also be updated as appropriate.)

4.4.2.7 Task 7: For Each Throughput, List All Contributing Events

Once all the Event templates have been updated to reference applicable Throughputs, each of the
throughput templates need to be updated to reference the applicable events (i.e., Evolves From
Events). In this way a cross-reference exists to facilitate verifying the integrity of the process defini-
tion. It may be useful to specify, by event, whether the throughput is required or optional (this is espe-
cially true if this convention was used in task 5 of this activity). The graphical model can help you
confirm that you have documented all the relationships; update the graphical model as appropriate.

4.4.2.8 Task 8: Define Throughput State Transitions

If you desire increased detail, then for each throughput, define throughput state transition as a
function of Event:Step#:new_state. That s, for each throughput, define how the throughput advances
through various throughput states as a function of the events that govern the evolution of that throughput.

4-13

4. Template Usage

4.4.2.9 Task 9: Update Internal Event Flow to Include Throughput::State References

Now that throughputs and their corresponding states have been explicitly defined, the internal work
flow within an event can be upgraded to include references to the states of throughputs. This can be
especially useful for modeling inspection or quality assurance phases of a particular event.

4.4.2.10 Task 10: Update Entry and Exit Criteria to Include Throughput::State References

Similar to the previous step, for all event templates, the entry and exit criteria can be upgraded to include
references to the states of throughputs that are either expected by or released by a particular event.

4.4.3 Activity THREE: DEFINE EVENT SUPPORTS

This step defines and references the support roles and resources needed by a particular work domain.
As detailed in the following tasks, this sequence of steps proceeds in a similar fashion to those in the
previous cycles.

4.4.3.1 Task 1: Build an Indented List of Supports

This indented list of supports should detail both the roles and resources needed to support the work
domain. The term “roles” is used in the broadest sense; therefore, not only do individuals perform
roles but so do teams, entire divisions, etc.

4.4.3.2 Task 2: Extend the Graphical Model to Include Supports

Using the supportindented list as a reference, extend the graphical model using the notation discussed
in Section 3.3. This model will now contain three types of objects: events, throughputs, and supports.
It will likely contain all four types of relations: inclusion relations (to show decomposition of events;
throughputs, and supports); sequence (to show ordering of events); specialization (to showspecialized
instances of classes of process elements); and reference (to bind events and throughputs, and to bind
events and supports).

4.4.3.3 Task 3: Establish a Template for Each Support on the Indented List

Asin the prior cycles, when establishing the template, attempt to fill in any information already known
(especially those fields in common with the Foundation template).

4.4.3.4 Task 4: Identify Support Abstractions

These abstractions are two-way relationships. They can be noted under the Composed Of/Part Of
fields of the Role and Resource templates.

An example of levels of abstractions within roles is:

Programming Team
Team Leader
Programmer (3-6)
Technical Support (1-2)

414

4. Template Usage

Line Manager
Administrative Manager
V&V Department
Statistical Group
Statistical Group Manager
Statistical Group Engineer
Dynamic Test Group

Note that the indentation on the support indented list and the graphical model support inclusion relations
can both be used for initial guidance on documenting composed of/part of relationships on the templates.

4.4.3.5 Task 5: Identify Any Additional Support States
The default state set for support items is:

* Available_Exclusively

e Available_Shared

e Not_Available

e Disabled

e Suspended

For each Support, Role, or Resource template, add any additional states that are necessary or useful
for defining relationships between supports and events.

4.4.3.6 Task 6: For Each Event, List All Needed Supports

If appropriate and desirable, also note whether a support is needed exclusively by an event, whether
it can be shared, and whether or not that support can be considered optional. For example, secretarial
support or a delivery van might be needed in a shared capacity, whereas a particular hardware device
or printing press might be needed exclusively.

4.4.3.7 Task 7: For Each Support, List All Supported Events

This is the cross-referencing step. It details the companion relationship between supports and events
(whereas the prior step defined the relationship between events and supports).

4.4.3.8 Task 8: Update Internal Processing Fields to Include Support::State References

With supports and their corresponding states explicitly defined, the internal processing within an
eventis upgraded to include references to the states of the roles and resources applicable to the event.

4.4.3.9 Task 9: Update Entry and Exit Conditions to Include Support::State References

This step is similar to the previous step. For all event templates, the entry and exit criteria are
upgraded to include references to the states of supports needed by an event.

4-15

4. Template Usage

4.4.4 Acrivity FOUR: DEFINE EXTERNAL EVENT CONSTRAINTS

Even establishing just a few External Event templates has considerable potential to simplify the
organization and representation of a process model. Often, especially in management intensive envi-
ronments (as opposed to function intensive), the governing flow of control is driven by management
directives. In other words, “the time to start something is when management says it is time to start.”
Such factors are readily modeled as external (and sometimes internal) constraints.

4.4.4.1 Task 1: Build an Indented List of External Constraints

This is fundamentally the same effort as in the other cycles, except that the list being built focuses on
itemizing external constraints.

The following are examples of external constraints:
¢ Policies
* Procedures
* Standards
¢ Guidelines
— Management guidelines
— Technical guidelines
- Support guidelines
* Management plans/budgets
» Directives (from “outside” people; typically vefbal)
4.4.4.2 Task 2: Extend the Graphical Model to Include External Constraints

Using the external constraint indented list as a reference, extend the graphical model using the notation
discussed in Section 3.3. This model will now contain all four types of objects: events, throughputs,
supports, and constraints. It will likely also contain all four types of relations: inclusion relations (to
show decomposition of events, throughputs, supports, and constraints); sequence (to show ordering
of events); specialization (to show specialized instances of classes of process elements); and reference
(to bind events and throughputs, events and supports, events to constraints, constraints to throughputs,
and constraints to supports).

4.4.4.3 Task 3: Establish a Template for Each External Constraint on the Indented List

As in prior cycles, when establishing the template, attempt to fill in any information already known.

4.4.4.4 Task 4: Identify External Constraint Abstractions

Use the Special Form Of and General Form Of fields to note the parent/child relations that exist within
the external constraints. Recall from prior material that these may include “whole/part” relations or
“generalized/specialized” relations. Again, the graphical model can greatly facilitate determining the
relations that need to be documented on the templates.

4-16

4. Template Usage

4.4.4.5 Task 5: Define Additional States for Each External Constraint

As in the other areas, it may occasionally be necessary to expand upon the default set of external
constraint states for some of the external constraints.

The following list includes existing external constraint states:
¢ Compliance_Under_Evaluation
¢ Compliance_Achieved
¢ Compliance_Failure

¢ Compliance_Waived

4.4.4.6 Task 6: For Each Event, Note All Applicable External Constraints

These can be listed in the external constraint column in the Event templates.

4.4.4.7 Task 7: For Each External Constraint, Note All Applicable Events

As with the other activities, this task establishes a cross-reference between templates to support verifying
template integrity.

4.4.4.8 Task 8: For All Events, Update Internal Processing to Include External_Constraint::State
References

With external constraints and their corresponding explicitly defined states, the internal processing
within an event can be upgraded to include state-sensitive references to applicable external constraints.

4449 Task 9: For All Events, Update Entry and Exit Conditions to Include
External_Constraint::State References

Similar to the previous step, for all event templates the entry and exit criteria can be upgraded to
include references to the states of external constraints that are governing an event.

4.4.5 ActivitY FIVE: DEFINE INTERNAL EVENT CONSTRAINTS (PERMISSION CLASSES)

In this example, the last major components introduced into the process definition are the internal
constraints. This effort is separated from the external constraint definition effort because internal
constraints must be explicitly bound to a role before they can be introduced into the eventdescriptions.

4.4.5.1 Task 1: Build an Indented List of Internal Permission Constraints
The following internal (permission) constraints should be included in virtually any list of constraints:
¢ Commencement permission

* Suspension permission

417

4. Template Usage

¢ Recommencement permission
e Cancellation permission

* Resurrection permission

e Completion permission

e Override permission

 Executive permission

4.4.5.2 Task 2: Update the Graphical Model With Internal Constraints

Generally, since internal constraints are always manifested through roles, there is little need to graphically
depict them. However, if you desire a detailed graphical model, internal constraints are graphically
depicted using the same symbol as external constraints (a triangle). They are bound to events, sup-
ports, or throughputs using reference relations, and they are bound to other internal constraints using
the inclusion relation.

4.4.5.3 Task 3: Establish a Template for Each Permission Class on the Indented List

When establishing the template, attempt to fill in any information already known.

4.4.5.4 Task 4: Identify Permission Class Abstractions

These abstractions are two-way relationships. They are found in the General Form Of and Special
Form Of fields of the Internal Constraint template. They can be derived from examining internal
constraint inclusion relations on the graphical model.

4.4.5.5 Task 5: For Each Role, Note All Applicable Permission Classes

On each Role template, there is a field for listing all applicable internal constraints exercised by that
role. Use this field to indicate whether the role can grant permission for cancellation state changes,
override state changes, etc.

4.4.5.6 Task 6: For Each Internal Constraint Class, List Associated Roles

While the prior step documents all the internal constraints exercised by a role, this step documents
all the roles exercised in a given internal constraint. As in prior cycles, these should always occur as
paired relationships.

4.4.5.7 Task'7: For Each Event, Update Internal Processing to Reference Role::Permission

With explicitly defined internal constraints, the internal processing within an event can be upgraded
to include references to applicable roles exercising authority as described within the internal
constraint templates.

4.4.5.8 Task 8: For Each Event, Update Entry and Exit Conditions to Reference Role::Permission::State

For all Event templates, the entry and exit criteria is upgraded to include references to roles and internal
constraints relative to that event.

418

4. Template Usage

4.4.6 AcTtiviTy Six: SIMPLIFY/CLARIFY TEMPLATE CONTENTS

At this stage in the evolution of a process’ template-based definition, the templates have been through
successive modification cycles. Before repeating the above activities with the goal of adding several
more layers of detail (i.e., expanding tasks into activities, subactivities, etc.), it would be useful to
improve and clarify the existing process definition.

This is the subject of Section 4.5.

4.4.7 ACTIVITY SEVEN: GENERATE ALTERNATIVE/OPTIMIZED PROCESS MODEL

After several passes through the above series of activities, a detailed and explicit model of the
processes within a given domain emerges. An ideal subsequent effort is to use that template-based
process definition as a means of implementing process improvement. This will be discussed in detail
in Section 4.6.

4.5 IMPROVING TEMPLATE USABILITY

There are a variety of ways to improve the usability of the templates. One technique is to improve the
way you present data using the existing templates. Another technique, especially useful if you have
specific or uncommon requirements, is to modify the templates and tailor them to accomplish
site-specific objectives. Both techniques are discussed below.

4.5.1 IMPROVING DATA PRESENTATION

In addition to the virtually unlimited variety of approaches you can take for using the templates, there
are likewise a great variety of ways for representing information within the templates. However, read-
ability is a critical goal; therefore, it is important to examine methods in which the presentation of
information within the templates can be simplified and made clearer.

One simple technique is to determine a naming convention for building unique identifiers that facilitate
ease of understanding. Consider the following example. For any given process model, select a unique,
brief identifier to represent that system. (The inspection process model example used in several sec-
tions of this guidebook uses the prefix SWAT.) For any template used within that system, append a two
character code where the first character represents the meta-class template, and the second character
represents the class template. In only one case does this yield duplication and that is on the Role tem-
plate (both role and resource begin with “R”). As shown below, the character “P” can be used (think
of the word “people”) to represent the Role template. This convention yields the following suffixes:

EM Event Management
EP Event Production

TP Throughput Product

TR Throughput Research

SP Support Role (“People”)
SR Support Resource

CE Constraint External

CI Constraint Internal

4-19

4. Template Usage

Therefore, SWAT_TP_UI-CODE might represent the user-interface code (UI-CODE) that is a
throughput product (TP) of the Inspection Process Model (SWAT).

Using a consistent pattern to construct meaningful unique identifiers is one of the key techniques for
improving the representation of data within the templates. The templates are intentionally
constructed with fields for intertemplate binding, and these fields always contain unique identifiers.
Properly constructed identifiers greatly improve the reader’s ability to understand the nature and pur-
pose of these numerous intertemplate relations. Unique identifiers of children should indicate their
lineage of parents and ancestors using a “pathnames” approach common within operating systems.
Continuing with the above example, suppose the product template defining UI-CODE indicates that
itis “composed of” MENU-SYS and several other modules. In turn, MENU_SYS indicates it is com-
posed of “PULL-DOWN?” and “POP-UP.” The constructed unique name for the pull-down menus
might be SWAT TP_UI-CODE_MENU-SYS_PULL-DOWN. (Note: In this example, the use of the
underscore character indicates separation of levels, and concatenated terms within a level [such as
PULL-DOWN] are always separated with a hyphen.) This not only easily distinguishes what a component
is, but how many parent generations it has and who those ancestors are.

The process analyst can further assist the reader by attempting to detect and reduce redundancy,
especially between levels of abstraction. For example, if an external constraint is already modeled at
ahigher level, itis not necessary to repeat the representation of that constraint on each of the activities
subordinate to that level. If a guidebook is subject to an external constraint represented by a style
guide, it is also true that each chapter of that guidebook is likewise subject to that same external
constraint. If each chapter is shown, due to the breakdown of events, as a separate product, the model
might explicitly show that each of these chapters is itself also constrained by the style guide. Although
this is certainly correct, it leads to cluttered templates. This clutter can be reduced by verifying that
the external constraint is applied against the “parent” product then remove the (essentially redun-
dant) reference to the external constraint from each of the subordinate templates. Note, however, that
the integrity of cross-reference fields must be maintained at all times. If references to the external
constraint are removed from chapter-level products, it must be verified that the External Constraint
template does not have chapter-level cross-references, but instead it only references the product at
the level of the overall guidebook.

It cannot be overstressed that simplicity is crucial. In the words of Einstein, “Make everything as simple
as possible, but no simpler.” For each template, the information recorded on that template needs to
be viewed from the substance of information it conveys. At some point, if there is little value to some
additional information, that information must be considered as potentially obscure or confused. A
crucial step to optimizing any representation is not only to determine what is missing (and should be
added) but also to discern what is excessive (and hence, should be removed). “Pruning” representations
is as crucial to improving their readability as are growth and extension.

Recall that a model is a representation of reality that captures interesting characteristics and abstracts
out all noninteresting characteristics. This seems especially applicable to process models. From a clar-
ity perspective, the question is not simply whether a given template captures something accurately or
not. It is a question of whether it is both accurate and interesting with respect to the objectives of the
definition and modeling effort. Avoiding and, if need be, removing uninteresting information from the
templates is crucial to improving the overall clarity of the model the templates represent.

4-20

4. Template Usage

4.5.2 IMPROVING AND TAILORING THE TEMPLATES

Occasionally, you will be able to achieve significant increases in the readability and usability of
template-based process models by not only using the techniques discussed above, but also by altering,
adding, or otherwise modifying the basic set of templates themselves. The arrangement of the tem-
plates into a hierarchy of a root template, meta-class templates, and class templates is deliberately
intended to simplify and support the tailoring process. There is such a vast diversity of processes and
a correspondingly vast diversity of objectives when constructing process models, that allowing tailoring of
the templates to accommodate site-specific goals is a key objective for this guidebook.

The templates’ current version attempts to keep information and relationships at an absolute minimum,
thereby leaving the greatest flexibility for altering the templates to meet site-specific needs. It should
be stressed that the templates are completely usable “as is.” In certain environments, however, espe-
cially after several template-based process models have been constructed, it may become clear that
you can make advantageous extensions or alterations to the templates. This directly translates into
improved ease of use, greater clarity, greater applicability, and even increased formality.

For example, suppose that the processes occurring within a particular site all follow the ETVX paradigm
(discussed in greater detail in Section 5). This paradigm essentially requires that all events have a val-
idation stage (the ‘V’ in the paradigm acronym). In their current form, the templates do not have an
explicit type of event dedicated to validation work. How might the process analyst respond to this?

Initially, the process analyst could elect to use the templates as they currently are and model a process
“tree” (i.c., a process with hierarchically supporting activities and tasks) dedicated to validation. He
can then build process models for all other work or processes occurring in the domain. To verify that
the regular work processes are adhering to the ETVX paradigm, the process analyst reviews the tem-
plates and verifies that each event does, in fact, make a “call” to one of the validation event templates
to perform a validation effort. Tasks that do not have such a call (at least according to the model) violate
the ETVX paradigm.

Alternatively, the process analyst can elect to define a new meta-class template and call it, for example,
“Measurement.” Underneath this meta-class, he can construct one or more related class templates
such as “Product Quality Assurance” and “Project Efficiency.” Fields within the quality assurance
template capture cross-reference information regarding throughputs subjected to quality assurance,
and they cross-reference to events indicating where the quality assurance measurements should occur.
Similarly, the efficiency template can be tied to throughputs and events and, depending on site-specific
objectives, even to resources. The efficiency template formally represents artifacts that support moni-
toring process progress and, subsequently, project histories. From this perspective, the heuristic for
assessing whether a process model achieves ETVX compliance is to investigate and verify that all
events have a cross-reference to a quality assurance class template under the measurement meta-
class. (The implication being that this represents a throughput being measured, evaluated, and
assessed from the perspective of achieving predefined quality goals.)

This alternative approach of tailoring the templates may be more labor-intensive at first than the
initial approach, but it has the distinct advantage of clearly representing key characteristics (or their
absence) of various renditions of process models. In this case, by adding a new meta-class and a couple
of new class templates, process analysts can easily and explicitly capture verification- and validation-
specific activities and artifacts that they consider important to their ETVX-oriented environment.

4-21

4. Template Usage

This is just one example, but the principle remains the same for other types of tailoring. If a site wanted
to tailor the templates toward DOD-STD-2167A-oriented process models, they benefit by expanding
on the throughput meta-class and adding class templates to explicitly represent DOD-STD-2167A ar-
tifacts. Conversely, if a given site follows processes intended to be compliant with IEEE 1074 (Stan-
dard for Software Life Cycle Processes), they can elect to expand upon the event meta-class. The
existence of and order of events is one of the principle characteristics of IEEE 1074. Furthermore,
since IEEE 1074 explicitly references the need for seven processes, these processes can all be given
a dedicated template format tailored toward collecting and representing the spec1ﬁc characteristics
of those individual process types.

When tailoring the templates, you will also need to update your documentation describing the usage
of the templates. The recommended approach is to pattern such documentation on the format used
in Section 3.2. Specifically, if the tailoring effort results in a new field that needs to be added to all
templates, that field should be added to the Foundation template. The field’s purpose and use should
be discussed and included with the rest of the discussions on Foundation template fields. If you need
to add a new field to all throughputs, you should show it on the throughput meta-template. A discussion
of the field’s purpose and use should be included with the discussion of Throughput template fields.

You should note that there is no particular reason to constrain the tailoring effort to the current three
level structure of root, meta-class, and class templates. In certain environments, it can be useful to
convert to a four level structure containing root, meta-class, class, and type templates. Another
environment may find that another layer, “subtypes,” should be added to the four-level approach.

A word of warning: all else being equal, increased complexity virtually always means increased risk.
Regrettably, it is far easier to justify adding new fields, new templates, or even new levels than it is to
justify removing fields, templates, or levels. Consequently, the general trend is often inexorably to-
ward ever-increasing complexity. At some point, ease of use starts to decrease and ease of understand-
ing starts to diminish. In all cases, tailoring the templates should be evaluated from a cost/benefit
perspective and with a keen respect for the elegance of simplicity. The objective is not merely more
information, the objective is more useful information.

4.6 USING TEMPLATES TO FACILITATE PROCESS IMPROVEMENT

The first use of the templates is typically to define one or more existing processes. In such cases, the
process exists and the templates are used to establish a base-line process model. The next step is to
use the templates to define a proposed process and to analyze that proposed process for desirable or
undesirable structural characteristics. The goal is to define a process that is an improvement over the
existing approach. The long-term objective is to incrementally achieve discrete process improvements,
and a steady evolution toward an optimized process.

4.6.1 ProcEss IMPROVEMENT VIA INCREASED PROCESS MATURITY

There are many methodologies for achieving process improvement. In the software engineering
industry, process improvement is often perceived to be the systematic progression to increasingly
higher levels of process maturity as defined by SEI's Capability Maturity Model (CMM). The chief
contribution template-based process representations make toward improved process maturity is their
support to organizations transitioning from ad hoc (Level 1) processes to repeatable (Level 2)
processes, and from repeatable processes to defined (Level 3) processes.

422

4. Template Usage

4.6.1.1 Level 1

If an organization is currently using Level 1, or ad hoc processes, it is important for that organization to
begin performing the work in a regular, repeatable manner. Typically, this means deciding which process
they want to use then training their people to perform that process. Selecting a process, particularly in
an environment where each process tends to be a new approach, can be a difficult challenge. It is made
more difficult by the fact that communicating about a process can be both subjective and inconsistent—
one person sees and thinks about it one way, another person sees it from their own perspective. Both are
right in their view; neither sees the whole picture. This is precisely where process representations can help.

A process representation using consistent terms, objects, and relationships (and possibly supported
by a graphical model) will allow people to more readily compare and contrast their different views and
more easily come to a common understanding. Furthermore, groups of people can simultaneously
coordinate work on process descriptions and models, and each can efficiently verify that their work
is consistent with work done by the others.

Once the process analysts have, with management, constructed an approved model of the process the
organization would like to follow, that same model can serve as the foundation for the development
of process guidebooks, process quick-reference guides, process-oriented training classes, etc.
Compared to attempting to develop a multi-hundred page operations manual of an ad hoc process,
the development and analysis of a process model offers a relatively low-risk, low-cost, and high benefit
alternative. As the organization trains its managers and personnel in using the intended process, and
as management and personnel become increasingly adept at repeatedly doing so, the organization
moves toward having a Level 2 (repeatable) process.

4.6.1.2 Level 2

After achieving a repeatable process, the CMM describes the next major level as a defined process.
As mentioned in Section 4.6.1.1, the process templates and accompanying graphical depictions can
serve as a foundation for the development of process guidebooks. If the templates are constructed and
maintained electronically, the possibility also exists for automatically deriving process guidebooks
based on information maintained within the templates. If you prefer to keep the information con-
tained on the templates to a minimum, you can still use the templates (in an automated environment)
to provide the skeleton of a process guidebook. Process analysts would then only need to annotate the
information in the initial draft by adding supplemental material that expands upon that which was
directly extracted from the templates.

4.6.1.3 Level 3

Even without automated support, the templates can assist an organization in efficiently developing
its process guidebooks and thereby moving toward a Level 3 process. With text-based guidebooks,
readability, completeness, and consistency are relatively high-risk considerations. As guidebooks
become increasingly larger, it also becomes increasingly difficult to ensure that:

* All areas of the guidebook are defined to the same level of detail.
¢ [Each area is compatible with information in other areas.
* Some areas are not redundantly described in multiple locations

¢ No critical areas have been overlooked.

4-23

4. Template Usage

Process models, especially when rendered graphically, allow much easier insight into each of these
characteristics. Consequently, work on a process guidebook can be preceded by work on developing
a process model, analyzing that model to assure that it uses a common level of granularity, that the
interfaces match between diagrams, that ali major activities have been represented, and none twice,
etc. When a satisfactory model has been built, the development of a process guidebook is primarily
an effort to translate the process model into descriptive-text. Since the templates may already contain
a considerable amount of descriptive-text, even this step is simplified.

4.6.1.4 Summary

To summarize, process representations using the combined template and graphical approach
described in this guidebook can be an important tool in an overall program of process improvement.
The primary contributions derived from this approach are improved understanding of your process
and an improved ability to communicate and teach that process to others.

4.6.2 PrOCESS IMPROVEMENT VIA REDUCED COUPLING AND INCREASED COHESION

Process improvement can also be performed on a simpler foundation. For example, software engineers
have long understood the advantages to designing modularized systems that exhibit the desirable qual-
ities of low coupling and high cohesion. The same principle can be applied to the development of an
improved organizational process. This subsection briefly examines structural analysis of process mod-
els (and the modification thereof) as a means toward incremental improvements in a process architec-
ture. Although the following discussion makes repeated references toward making changes to
information captured on the templates, the goal is not simply to improve the clarity of this information
on the templates (such as was discussed in Section 4.5.1). Instead, the primary goalis to fundamentally
improve the way a process is conducted as represented by the information on the templates. Improving
a process by changing the templates is only the first step; The second step, once the analyst is satisfied
with the alternative improved model, is for management to use that model as the foundation for actually
altering the way work is performed.

The following approach was developed to work specifically with template-based process representations.
However, it can also be used to improve any process description that includes entry criteria, internal
structure, and exit criteria as part of the representation. To summarize, this approach recommends
that the process analyst attempt, in priority order, to simplify exit conditions, simplify entry conditions,
and simplify the internal processing of all activities and tasks participating within a given process.

At the basis of this prioritization are the issues of “fan-in” and “fan-out” and the general problem of
excessive process coupling. Consider exit criteria. Suppose one event referenced five other events in
its exit criteria. Suppose each of these referenced five more events, and each of those referenced
another five. Assuming no overlap, within three “steps” the fan-out has now spread to 125 different
events. The coupling and interrelationships between events can rapidly become overwhelming when
exit criteria contain unnecessary complexity. Similar problems exist with fan-in or with complex entry
criteria. Fortunately, fan-in implies that the complexity exists “upstream” from the event, and the
event is (if its fan-out is low) potentially reducing overall process complexity. Note that although
template-oriented terms are being used (such as “exit-criteria”), what is actually being discussed here
are events actually performed within an organization and the amount and kind of relationships that
exist between those events. Complex exit criteria directly corresponds to complex relations of the events
being modeled by the templates.

4. Template Usage

The complexity of an event’s internal processing is least important. This is based on principles of
information hiding. From one perspective, if the complexity of an event is hidden from the rest of the pro-
cess, it does not adversely affect any event other than itself. The benefits gained by reducing internal com-
plexity are generally limited to the event only and are not likely to propagate to other events or activities.

Using entry condition complexity, internal structure complexity, and exit condition complexity, the
following eight levels of complexity can be defined:

1. Low Low Low
2. Low .High Low
3. High Low Low
4. High High Low
5. Low Low High
6. Low High High
7. High Low High
8. High High High
Any activity or tasks can be characterized by one of these levels of complexity.

These are not steps to be followed in inverse order to reduce the complexity of relationships between
and within events. Instead, the ranking is intended to highlight where the greatest benefit can be
achieved. For example, a Level 8 event (HHH) can be advanced either to Level 7(HLH) or toLevel 6
(LHH) or to Level 4 (HHL) by either simplifying the internal structure, the entry criteria, or the exit
criteria, respectively. .

From this perspective, developing an improved model to reduce process complexity and process coupling
can proceed quite simply. First, the process analyst evaluates each of the events within a process and
assigns a complexity ranking, from 1 to 8, based on where complexity exists within that event. After
this rank ordering, the analyst examines the events to decide which ones are potentially the easiest
to change. Generally, Level 8 events are examined and optimized first (since they are the most complex
and are likely to have the greatest potential for simplification). Proceed with Level 7 then to Level 6, etc.
As discussed earlier, the purpose is not to improve an event by one complexity rating, but to achieve the
greatest change practical. If, by using the above ordering, it is equally possible to simplify either the entry
criteria or the exit criteria, then the greatest gain can be achieved by simplifying the exit criteria.

This technique is a simple approach for using a template-based process model as a foundation for
examining and reducing process coupling and increasing process cohesion. There are certainly other
approaches thzt lend support to new models of proposed improved processes. These models, in turn,
can guide the development of new guidelines for performing the process.

For example, one technique is to analyze the structure of a process model and reduce the number of
events a throughput must transition through before it is considered complete. This is effectively an
effort to eliminate unnecessary work from the product development cycle. Another approach s to as-
sure that there are a minimum number of long length serial event chains. Long serial event chains
imply a risk of critical path events with no parallelism to ensure the progression of work. In such series
of events, delays early in the chain cause delays of all later dependent events.

425

4. Template Usage

In these approaches to reduce process coupling and increase cohesion, the common denominator is
the analysis of the structural characteristics of the process model. The goal is to alter or rebuild the
model so that it depicts a process structure withincreased advantageous characteristics and decreased
disadvantageous characteristics.

Again, it isimportant not to confuse improving the model withimproving the processit is representing.
Improvements to a model are always done from the perspective of the process implications of chang-
ing some given event: especially with respect to its impact on other events. Often, changes that appear
easy to make on the templates are actually quite hard to enact within the real process. Conversely,
what appears difficult or awkward to change within a model (graphical or templates) may actually be
very simple to change in the process itself.

In all cases, the process analyst’s orientation must be on improving the process. The model is only a
facilitation tool: a means toward an objective. It is important to remember that there are distinct dif-
ferences between improving the clarity of a template model (Section 4.5.1), improving the usefulness
of the templates themselves (Section 4.5.2), and improving the process represented by the templates
(Section 4.6).

4.6.3 INCREMENTAL CHANGE

These templates and their structure, relationships, and associated data fields are designed to support
incremental application and incremental efforts toward process optimization. As stated previously,
all that is needed to define a process are the event templates. Role, Resource, Product, Research, and
Constraint templates can all be ignored or deferred until later. Furthermore, the essential characteris-
tics of the Event templates are fairly nominal: name, identification, purpose, comments, and entry and
exit criteria in terms of other events.

As described in detail in Section 4.4, the first pass at a process model can be built very rapidly by
constraining process collection and definition to just event objects, sequence relationships, and inclu-
sion relationships. If further information is desired, a second pass can be done defining authority tem-
plates, a few basic roles to exercise the authority (maybe even just two roles: managerial and
non-managerial), and relationships between events and the roles required to support those events. A
third pass might introduce Resource templates. A fourth pass might be done to break large scale tasks
(such as clean proofing the document) into smaller scale activities and tasks (such as reviewing the
document, then clean proofing the table of contents, main sections, and appendixes). A fifth pass
might begin to include Product templates and relationships to the events that produce the product.
Maybe the next pass introduces Research templates, etc.

To summarize, the key importance in the use and optimization of the templates is the principle that
defining a process model proceeds one stage, or cycle, at a time. Each stage should be comparatively
small and relatively low risk. Each stage should be evaluated in terms of the value derived from process
definition in relation to the effort required to construct that definition. This technique corresponds
directly to the “goal-driven” approach advocated in Section 1.

Finally, the process analyst should strive to constrain proposed or improved process models to those
that are realistic within an organization. From the perspective of support for process improvement,
the goal is not to develop the ideal model; the goal is a model that gives insights into the ways that
feasible incremental process improvement can be achieved.

4-26

5. ALTERNATIVE PROCESS REPRESENTATIONS

This section examines opportunities for constructing or extending process models by supplementing
the templates with other representations, or vice versa. A set of alternative process representations
are introduced (STDs, ETVX, SADT, Statecharts, Petri nets, PASTA, and Role Interaction Nets
[RINS]), and each is examined from the perspective of process modeling.

As can be seen in Figure 5-1, after completing this section you might elect to skip Sections 6 and complete
your study of this material by reading Section 7. This approach provides all the essential information
relevant to formal process definition and modeling. However, for further guidance on establishing a
process definition and modeling program, continue with Section 6 after completing this section.

- P

4) (6)
¢)) 3) __)Ii 'Ién(l 1 _ﬁ_m
. plate Program of
Introduction Templates Usag \ M

v \
@ AN
Overview and \
Foundation dN \
N\

[AV
AV
v l J, v \i ‘i
U] Appendices
Summary —Examples—

Figure 5-1. Guidebook Organization View 5

5.1 PROCESS OBJECTS AND RELATIONSHIPS

A model is an abstraction of a real-world object or phenomenon. Alternative approaches to process
modeling can be contrasted by examining the objects elaborated by each approach and the relation-
ships permitted among those objects. There is no universal standard for what is a “better” approach .
and what is “worse.” All that can be evaluated is which approach has the greatest potential for helping
you achieve your goals, in your environment, using your resources, given the funds available in your
budget, etc. Additionally, significant changes in any of these variables may render one approach pro-
gressively less beneficial and another approach more beneficial. Therefore, the purpose of this section
is not to provide a rank-ordering of better and worse approaches to process definition and modeling;
instead it is to provide a basic framework that you can use when performing your comparative analysis,
and to present information that you can use in determining the approach best suited to your requirements.

Before examining each of the alternative notations, the following material constructs a meta-model
composed of template objects that graphically shows legal use of the relations which can be used to

5-1

5. Alternative Process Representations

connect template process objects. After briefly discussing this material, components from these dxagrams
will repeatedly be used to compare and contrast the alternative notations.

5.1.1 TEMPLATE META-MODEL

As presented in Section 3, the template-based modeling techniques described in this guidebook define
objects and the relationships that connect those objects. There are four major classes (meta-classes)
of objects:

 Event objects

* Throughput objects
. Support objects

* Constraint objects

Events include both managerial and production events. Throughputs include products and research.
Supports include roles and resources. Constraints include internal and external constraints.

In order to bind objects to other objects, there are four major types of relationships that have been
defined: :

¢ Inclusion relations

* Sequence relations

* Specialization relations
* Reference relations

As reviewed in Sections 5.1.2 through 5.1.4, inclusion relations are used to indicate object decomposition,
sequences relations are used to order events, specialization relations allow inheritance, and reference
relations are used to capture any type of relation not already covered by the other three.

In the following material, STDs, Statecharts, and other notations are examined in terms of these objects
and relations. Generally, this set represents a superset of the objects and relations applicable to the
various notations. In other words, each of the alternative notations can be examined in terms of the
support they give to modeling event, throughput, support, and constraint objects and the support given
to modeling inclusion, sequence, specialization, and reference relations.

5.1.2 REFERENCE RELATIONS

From the perspective of the templates and as shown in Figure 5-2, event objects can establishreference
relations to each of the three other objects, and events may also make references to other events (re-
call from Section 3 that reference relations represent an object making any type of reference to anoth-
er object and were indicated using dashed lines). When constructing a template-based process model,
the process analyst might elect to take an event-driven approach and proceed by first defining events
and then defining (reference) relationships between events and other principle process objects (i.e.,
throughputs, supports, constraints, and other events).

52

5. Aiternative Process Representations

7N
(
_Events‘L
7/ X
2R BN
2 AN
v
Throughputs | Supports
|
Sequence —> I
Inclusion SRR i .
Constraints
Specialization O—p
Reference —_>

Figure 5-2. Reference Relations: View 1

However, it is also permissible, as shown in Figure 5-3, to have throughputs and supports making direct
reference to constraints. Throughputs may also directly reference other throughputs, supports may
directly reference other supports, and constraints may reference other constraints. These are shown
on the diagram as a loop (dashed-line) both originating from and terminating at the same object.

PN
(
VentsL
AN
p 2 RN
AN
/TN | WAl
| Theoushpue | Supgors)
-7 '\ | /S~
AN | /
Sequence > N\ ¢ /
:nclu.sicfn. IS ‘a iﬁ
— L)
erence @ —— -/

Figure 5-3. Reference Relation: View 2

Additionally, all relationships exist as two-way links. If, for example, an event references a support,
then that support must also reference the event. This provides a direct means to verify the consistency
of the relationships that have been incorporated within a model. Figure 5-3 shows these two-way

53

5. Alternative Process Representations

relations as double-arrow lines connecting dissimilar objects. As indicated in this diagram, with only
one exception all objects can directly reference all other objects, and each object can reference itself.
The only exception is that the templates do not allow direct relations between throughputs and sup-
ports. This is because a support (role or resource) can only work on a throughput (product or research)
via some event. Similarly, a throughput is only affected by a role or resource as a function of some
event. Therefore, these relationships always exist as support-event-throughput relation sequences or
as throughput-event-support relation sequences.

5.1.3 SPECIALIZATION RELATIONS

In the inspection example shown in Section 3, the inspector role was shown as having two specialized
forms: key_inspector and regular_inspector. In a similar way, any other object can be represented with
a“child” being a specialized form of the parent, and the parent being a “generalized” form of the child.
Therefore, in addition to reference relations (discussed in Section 5.1.2, and shown in Figures 5-2 and
5-3 asdashed-lines) the templates support the specialization relation as shown in Figure 5-4. This rela-
tion is depicted (both in graphical models and in this template meta-model) as a solid line that has
a small circle as a “tail.”

77 TN
(
vents‘)
RN
p /s (17N
AN
/Y /oD G N
\ Throughputs) I Supports)
J V‘\ . /4 p\ Y
N\ | /
Inclusion ----» E ,
Specialization O— « t%
Reference —_——> \ ~— 4

Figure 5-4. Addition of Specialization Relations

As indicated in Figure 5-4, specialization relations are restricted from combining dissimilar objects.
Consequently, events may only be a specialized form of other events, supports may only be a specialized
form of other supports, etc. Note, however, that all objects may be depicted using the specialization
relation, if necessary.

Specialization relations are always shown with the arrow originating at the child and terminating at
the parent. The reverse link for this relation is considered, as introduced above, a generalization rela-
tion. This relation depicts parents as generalized forms of children. Finally, note that specialization
and generalization are all relative. Take, for example, a specialization hierarchy that is five levels deep.
Objects on the third level would be specialized forms of objects on the second level (their parents),
but they would be generalized forms of objects on the fourth level (their children).

5-4

5. Alternative Process Representations

5.1.4 SEQUENCE AND INCLUSION RELATIONS

The final diagram in this section (Figure 5-5) adds the remaining two relations that you will use when
examining the other represantations. The first of these relations is the sequence relation. This is shown
on Figure 5-5 as a dark, solid line that loops from the event object back onto itself. The sequence rela-
tion is the only relation that is restricted or dedicated to one specific type of object: events. The se-
quence relation shows an ordering or partial ordering on a set of events by pointing from “pre-set”
events to “post-set” events. That is, for any given event, all events showing a solid arrow terminating
at the given event have exit criteria that must be satisfied before the given event’s entry criteria can
be satisfied (the pre-set of events). Similarly, the post-set of events for the given event are all those
events whose entry criteria depend on the given event’s exit criteria: pointed to by solid arrows
originating at the given event and terminating at the post-set of events.

e\
VAN
\-\ Througlvl?u
N4

Sequence —_>
Inclusion R J
Specialization O—»
Reference ——>

Figure 5-5. Addition of Sequence and Inclusion Relations

The other type of relation indicated in Figure 5-5 is the inclusion relation. Inclusion relations are
shown by small looping, dotted-line arrows. As depicted, any object can include other objects of its
own type, and no object can include objects of a different type. The inclusion relation is commonly
used as a means for decomposing complex objects into simpler objects or for decomposing group
objects into their components parts (each of which might further decompose into its parts, etc.).

Figure 5-5 shows all the objects and relations legally permissible using the template-bascd approach.
(As stated throughout this guidebook, this set of process objects and relations is designed to be aug-
mented or modified to suit site-specific objectives. This section, however, discusses the alternative
notations entirely in terms of the basic set of four objects, and four relations.)

5-5

5. Alternative Process Representations

5.2 ALTERNATIVE REPRESENTATIONS

Discussed below are the following six alternative process representation and modeling notations:

o STDs
e ETVX
e SADT

e Statecharts
e Petri nets

* PASTA

* RINs

These notations were selected to accomplish a variety of objectives. STDs are discussed first because
they offer one of the simplest approaches for modeling a process. Although STDs are quite limited
when compared to other techniques, they can be quite useful for learning or teaching purposes.

ETVX and SADT were both selected because of their wide-spread acceptance by industry. Originally
designed as techniques for representing software-based or software-oriented processes, they can be
generalized for use in process definition and modeling.

Statecharts and Petri nets were selected because these notations offer opportunities for gaining
insights not only into the static but also the dynamic characteristics of a process. PASTA is included
because it was designed to support EBPM.

Finally, RINs are included as an example of a notation that readily translates into Petri nets and/or
Statecharts.

5.2.1 STATE TRANSITION DIAGRAMS

STD:s are often used for describing finite automata (finite state machines). Any process that can be
described in terms of a finite automaton can be represented using an STD. Generally, a finite automa-
ton accepts some series of input symbols and typically produces some series of output symbols
(Kolman and Busby 1984). Each such output symbol is a function of the relevant input symbol, the
current state of the automaton, or both. Additionally, as input symbols are received by the automaton,
its state may change. With regard to process modeling, input symbols and output symbols typically rep-
resent rilestones that occur in reality, and states within the machine represent different phenomena
or activities within an overall process. States have a time-dimension, state transitions do not. Thus,
finite state machines can be seen as one possible representation for modeling sequences of phenome-
na within some defined domain. When modeling the behavior of large or complex systems, it is often
useful to discuss both states and sets of states. The term “mode” is optionally used to distinguish a state
set (Sanden 1992a).

The dynamic behavior of a state transition machine is simply described. All state machines, at the outset,
are set in thieir initial state. Whenever a legal input symbol is received, the machine always transitions
to the next state, which may or may not be identical to the current state (this is the state transition).

56

5. Alternative Process Representations

From the data collection templates, it is state information captured by the templates that directly
translates to STD models. It is often easier to represent events as arcs. The arcs among events can be
throughput and state transitions; however, STDs are not good for representing supports and
constraints. Also, the process engineer may want to consider an STD for throughputs (as they have
state transitions also); but typically, not much insight would be gained from such a diagram (that is,
it is likely to be just a chain of states, perhaps with a simple loop involved).

Because of scale-up problems, STDs are best used when a process (or part of a process) is not
excessively large or complicated. Another advantage to STDs is that, due to their relative simplicity,
the initial costs for training and the learning curve are likely to be lower than using other less familiar
or more complex process models.

From the perspective of the objects and relationships used within the templates, STDs primarily
capture event-event sequence relations. However, as shown in Figure 5-6, carefully constructed STDs
can construct an intertwined model that not only shows events and their states, but also throughputs
(products, for instance), and their evolution through a variety of states. Note that throughput state
transitions can be used to drive the ordering of events, events can be used to determine the states of
throughputs, or some combination of these two approaches can be captured—all using STDs.

Events
/
/7 .
/
1 Th;oughputs
L, |

Sequence >

Inclusion LRSS 3
Specialization O—)
Reference —_——>

Figure 5-6. State Transition Diagram Relations

5.2.2 ENTRY-TASK-VALIDATION-EXIT

The premise behind the development of ETVX was the necessity to find a means to embed methods
and tools into a common framework for intellectual and management control (Radice and Phillips
1988). ETVX (see Figure 5-7) is a quasi-diagrammatic representation of IBM’s PPA. The authors of
ETVX take the position that PPA is the highest representation of the software process and that

5-7

5. Alternative Process Representations

although it contains the necessary elements for representing software engineering environments and
activities, it also is applicable across a much broader framework (Radice and Phillips 1988).

Product Inputs

= e s s« Controlled by Activity Management

Product Qutputs

]

In-Process Monitoring:

* Measurement

* Quality Assurance

* Verification

* Validation (optional)

* Risk Assessment (optional)

Management Process Outputs

v v
Product Product Com- Risk
Quality pleteness

Modified ETVX Paradigm
| Instantiate With Methods

—— —

Figure 5-7. Entry-Task-Validation-Exit Diagram

Part of the motivation behind PPA was the belief that it is essential to have the ability to rigorously
manage processes beyond the levels provided by individual tools and techniques. Also important was
the need to provide some means whereby an evolving process could, by virtue of how that process was
enacted and applied, influence or govern the requirements for new support tools.

Generally, PPA is intended to define a basis for beginning an orderly evolution in the way that software
is engineered. Radice and Phillips (1988) claim that PPA:

Ensures a repeatable and simple paradigm at all levels of the software process.

Contains the means for self-improvement by basing itself on the need for statistical quality
control.

Requires a validation mechanism for any work item produced during the development cycle.

Is based on what already exists in the software industry and draws only from the best proven
alternatives.

Addresses the complete life cycle of software production.

Does not require a complete set of tools in its first iteration.

5-8

5. Alternative Process Representations

The ETVX paradigm is a procedural formalism for representing activities and relationships within
PPA. An ETVX box represents the concept that at any level of abstraction a work activity must have
entry (E) and exit (X) criteria, some task (T) to be done, and some means or collection of means for
performing validation (V).

Hierarchical decompositionis achieved in ETVX by “exploding” the task (T) component of an activity
and showing the subactivities (each in ETVX form) of which it is comprised. (Similarly, any subactivity
can also be further decomposed, as necessary.) Additionally, the ETVX model does not imply all acti-
vities or tasks in succeeding stages wait for completion of preceding stages. Later stages may be
functioning (that is, activities occurring) concurrent with preceding stages.

The only constraints governing the commencement of activities at a given stage are its entry criteria.
Once the entry criteria are satisfied, the task related work of that stage may commence. After task
related work is completed, validation may commence. Typically, the validation effort will yield infor-
mation for use in evaluating the degree of compliance achieved with regard to the exit criteria. Formal-
ly, a stage is not complete until all of its exit criteria have been met. However, one or more exit criteria
may be satisfied at any time during the task related work. In this way, entry criteria to other stages may
become satisfied prior to complete satisfaction of exit criteria in prior stages, thereby leading to the
previously mentioned parallelism and general asynchrony.

You should note that the ETVX approach does not yield an interconnected diagrammatic representation
of the system being modeled. Instead, ETVX rigorously examines each of the four subcomponents
that constitute an activity.

When using the templates, E and X are the Entry Criteria and Exit Criteria on the Event template.
The parent/child relations on the template can be used to define ETVX decomposition. Validation
is best captured by defining a set of events that are explicitly intended for performing validation, and
then heuristically asserting that all events in a given model must, somewhere within their internal pro-
cessing, invoke one or more events from the validation event-tree. Internal Processing, also on the
Event template, maps to the tasks (T) in ETVX. The Child Events, from the Process template, explic-
itly describes the tasks in ETVX. Even though the templates contain all of the information for ETVX,
it is important to remember that ETVX is not an operational representation. ETVX’s usefulness
comes from its conceptual presentation for process definition.

ETVXis useful for defining the high-level organizational processes since it has greater flexibility than
the other approaches. This is especially useful in volatile environments where you may want to repeat-
edly change and update your representation as your understanding of the process grows. ETVX can
also define a process in an environment where management is not willing to support the process con-
trol of a well defined process. ETVX is a good process representation when parts of the process, specif-
ically some of the lower-level events, are defined in greater detail. This can provide a good
compromise between high-level flexibility and low-level detail. Additionally, since ETVX has ahierar-
chical presentation mechanism, essential for representing large and complex processes, it represents
hierarchical processes well but not as explicitly as other models.

From the perspective of the objects and relationships used within the templates, ETVX models
primarily capture event-event, event-throughput, and event-constraint reference relations (Figure 5-8).
The decomposition of events (shown by the inclusion relation) of events into subevents is also well
supported. Notably absent from the ETVX approach are explicit conventions or techniques dedicated
to representing the supports (roles and resources) required within a process. To capture such information,

59

S. Alternative Process Representations

the process modeler needs to rely on Entry Criteria and Exit Criteria, and he possibly needs to add
adjunct documentation to detail the characteristics of various supports.

J/ I

/|

4 |

Throughputs I

|

Sequence . |

Inclusion SRR 2 l .

Constraints
Specialization O—» « \
Reference —_—D \ J

~

Figure 5-8. Entry-Task-Validation-Exit Relations

5.2.3 STRUCTURED ANALYSIS AND DESIGN TECHNIQUES

When applying the SADT to software systems, the overall approach consists of identifying activities,
identifying the inputs and outputs of those activities, identifying factors that constrain the activities,
and identifying resources or materials that support the activities (Marca and McGowan 1988).

As Figure 5-9 depicts, activities are represented diagrammatically as boxes. Inputs to an activity are
labeled arrows arriving at the left side of the box. Outputs from an activity are labeled arrows departing
from the right side of the box. Constraining influences are labeled arrows arriving at the top of the box,
and enabling mechanisms are labeled arrows arriving at the bottom of the box.

Control

1

Input ——— Activity 3 Output

Mechanism
Figure 5-9. Structured Analysis and Design Technique Diagram

The outputs from one box may be the inputs, controls, or enabling mechanisms for any other box
(including, in rare cases, itself). Boxes are all named and all arrows carry labels. Arrows are allowed

5-10

5. Alternative Process Representations

to be split into multiple branches or join to combine multiple branches into one. Any box can be
decomposed into any number of subboxes. These, in turn, can be decomposed, and such decomposi-
tion can repeatedly continue until the necessary level of detail has been achieved. Inputs, outputs, and
controls define the interfaces between boxes, and enabling mechanisms permit the controlled mixing
of subjects. When a box is “exploded” to yield a new subordinate diagram, the box and diagram
boundaries must match.

Figures 5-10 and 5-11 depict a small example of the top two layers of a process. Generally, and for
diagrammatic clarity, a diagram is restricted to three to six boxes. This approach allows for a gradual
progression in the presentation of details. Also, huge models are discouraged in favor of collections
of many small, interrelated models. Each of these smaller models contributes meaning to and derives
meaning from its interactions with the other small models. In principle, developing an understanding
of each of the small models and it relationships to other small models will lead you to a clear
understanding of otherwise very complex systems.

System Risk
Management
Plan
Software
Policy
TRW Ada Softwar
System ——» Process > Producte
Requirements Model
0
Project Team

Figure 5-10. Structured Analysis and Design Technique Example 1

Commonly, it is throughputs that would be modeled in SADT as arrows arriving at the left side of a
box and/or departing from the right side of a box. Constraints (especially external constraints) would
be modeled as “control” arrows arriving at the top of an SADT box. The Support templates (Roles
and Resources) can be used (from the event perspective) to represent the enabling mechanisms (ar-
rows arriving at the bottom of an SADT box). Further, SADT permits capturing a considerable
amount of text information; therefore, comment and description fields and other relevantinformation
can be readily transferred from the templates to SADT, and vice-versa.

SADT is perhaps the most popular software PN being used to date. It is widely used for software
system design, and there are a number of automated tools available on the market which support the
technique. SADT is capable for large scale process definition; but SADT, like ETVX, is weak at capturing
process dynamics. For example, an SADT link can only carry the syntactic structure of the process in-
formation but not the semantics of the enactment. For SADT to be enactable, a process engineer must
define the type of link on the SADT diagram and then implement the semantics of the link. Along with
the SADT diagram, the process engineer should also use the data dictionary for the implementation of

5-11

5. Alternative Process Representations

Software
System Risk Policy

Management 2

Plan Ci1 l

9 Plans
System . \
Requirements (—) Trained
() Software
Developers
| Initial
Software
oD Product
i
Managers
Software \
Developers \ 3
\& \\
>) g
Tester
Identified Risks 4
entified Ris
N o N
/
M1
Project Team

Figure 5-11. Structured Analysis and Désign Technique Example 2

enactment. Other limitations with SADT include the difficulty representing the concept of roles and
authority for a process. However, SADT can be relatively easy to use for defining large processes since
it is capable of representing higher level abstraction and process decomposition structure.

As summarized in Figure 5-12, SADT models readily capture virtually all the reference relations
between and among objects. Events can reference other events, throughputs, supports, and
constraints. Similarly, throughputs and supports can each reference themselves. SADT also readily
supports decomposition. The figure (Figure 5-12) shows inclusion (decomposition) relations existing
on all four process objects. Although SADT primarily supports event decomposition, deliberate use
by the process modeler will allow SADT models to show relative decompositions of throughputs, sup-
ports, etc. Finally, as highlighted by the event-event sequence relation in Figure 5-12, SADT does
support capturing information about the sequence or order of events.

5.2.4 STATECHARTS

Statecharts are an extension of the basic notation used for finite state machines. Statecharts allow a
finite automaton to be decomposed into a representation that models two or more interacting or com-
municating subsystems. Statecharts also support hierarchical decomposition of transition diagrams
so that various levels of abstraction can be independently represented (Sanden 1992b). Figure 5-13

5-12

5. Alternative Process Representations

[y N4
\.\ Supports ')
S * Y

Sequence _—>
Inclusion --==>
Specialization O—>

Reference —_——

Figure 5-12. Structured Analysis and Design Technique Relations

and Figure 5-14 are examples of Statecharts adopted from Marc Kellner’s SEI technical report (Kellner
1989). Figure 5-13 is an activity chart of Statemate that represents the functional perspective of process.
Figure 5-14 is Statechart of Statemate that represents the behavior perspective of process.

Statecharts are commonly used to model concurrent, real-time system behaviors. Consequently, they
are an intuitively attractive technique for general proce$s modeling. Since statecharts were intended
to model systems that are typically very complex, they contain a variety of conventions which both sim-
plify and clarify the representations. In addition to the hierarchical decomposition already mentioned,
there are techniques for representing superstates, conditional transitions, default states, history states,
conditional entrance, selection-based entrance, and timeouts (Haral 1988; Coleman et al. 1990).

Hierarchical decomposition, in combination with the concept of superstates, allows gathering sets of
states together that have common transitions. Typically, the superstates of a level are defined, then
subordinate levels of substates are defined as an expansion of each superstate. Each such substate can,
in turn, be viewed as a superstate and itself defined in terms of still lower substates. This iterative process
can be repeated until the desired level of detail has been achieved.

Conditional transitions provide a simple means for extending the concept of some milestone-event
causing a transition from one state to another state. Specifically, milestone-events can be coupled with
conditions, and then only when the right combination of milestones and conditions occurs does the
state transition happen. Using this technique, it is possible to represent situations where an activity
causes a state transition only if some condition is simultaneously true or where an activity results in
one type of transition given one condition and the same activity results in another type of transition
given a different condition. Obviously, a condition may be replaced by an arbitrarily complex condi-
tional expression, and thereby represents increasingly complex interactions. Conditional transitions
are diagrammatically represented by following an arc’s listed transition (or transitions) with a “/”
character which in turn is succeeded by a simple or complex conditional expression.

5-13

5. Alternative Process Representations

Pt F14A_Ctrl
AWCAP Data TR
Work_Indl_Chg ! K : [
o : ;
Investigation : : .)
1 ’
L 4
Gathering_Info Prep Inv Rpt| .’
Review_Doc| |Rev Listings| | Review_Test t
Duplcting_Prob L.’ ‘
Invest_Report - -~ Duplic_Status
F

d_Invest
Prob
m"eﬁ_ [Gather_Info} \

Rev_Doc ¢ Rev_Listings m_u_m;I

(NEED_MORE_INFO)

Invest_Assgnd

not (DUP_D]

snd not

NEED_MORE _INFO)
(DUP_DES

mo_c@m
D is
_MORE_INFO)
NEED, MO INFO)
Begi _MORE
(invest Pending } gn lovest) — |

___ Investigation . .

Figure 5-13. Statechart Example 1

Default states are a simple extension within statecharts that allows a single state within each orthogonal
collection of states to be labeled as its default state. Independent of whether there are one or more
orthogonal subsystems of state machines, any state machine can be marked to represent the default
state of that machine. Furthermore, each subordinate refinement of superstates into substates can
also include a marking that represents default states. By using this technique, it is possible to simply

5-14

5. Alternative Process Representations

/ [Work_Indl_Chg | Work_Indl_Chg \
s N

nd_Invest
(not In_Rpt_Desired) {C) @ est Prob

[Gather Info]

Rev_Doc # Rev_Listings Rcv_'kn_lnm—l

(NEED_MORE _INFO)
Prep_Inv_Rpt

Invest_Assgnd

Vood NEED_MORE _INFO)
(Invest Pending } Begin_Invest > b Do]
0b_Lup

_ Investigation

Figure 5-14. Statechart Example 2

and explicitly represent the behavior of a machine (or “submachine”) upon its receipt of initial input.
Default states are represented by an unlabeled arrow pointing to one of the states within a machine.

“History states” augment the concept of “default states.” With default states, the machine always
commences from the indicated default, regardless of any activity which may have happened internal
to that machine during a prior activation. However, history states provide a mechanism for making
the entry state to a machine a function of the state that the machine was left in when last activated.
As implied by the name, with history states the history of activation directly affects the behavior of
future activations. (With default states, a machine’s prior activity is locally unimportant—the machine
always commences from the same state.) The relevance of history within a given machine is indicated
by placing an unlabeled arrow pointing to a small circle surrounding the letter “H” inside the boundary
rectangle of an entire machine. Note that a machine might have both a default state and history states.
In such circumstances, the default state is only relevant during the first activation of that machine. All
subsequent activations would be influenced by history.

Conditional entrance is an abbreviated way to represent complex transitions from one state to a number
of substates. If a state, for example, transitions into one of five different substates of another state,
one diagrammatic representation would be to explicitly show the five conditional transitions, each
bound to the relevant substate. Alternatively, conditional entrance can simplify the diagram in the fol-
lowing way. Instead of showing five condition-driven variations of the event causing the transition
from the first state to the second state, only one line is drawn from the first state to the second state,
and itislabeled “unconditionally” as the particular event. Then the decomposition of the second state
shows the conditional information as follows. The event is shown as a single inbound event on a line
pointing to a small circle surrounding the letter “C” (signifying the conditional entrance). From this
encircled “C” radiates (in this example) five lines, one to each of the substates. Each of these lines
is then labeled with the appropriate condition or conditional expression.

5. Alternative Process Representations

Selection-based entrance is similar to conditional entrance except that selection entrance is used when
decomposing a higher state into its substates and when those substates have a clearly defined one-to-
one correspondence with a range of discrete values generated by the superstate. Consequently, when
showing, for example, 26 different substates (representing each letter of the alphabet, any one of
which might be “selected” during the superstate), it is not necessary to show 26 inbound lines, each
labeled with an activity representing the selection of the appropriate letter. Instead, these 26 labeled
lines can be replaced by an unlabeled arrow pointing to a small circle surrounding the letter “S.” Nota-
tionally, these two approaches are equivalent, but the latter notation eliminates considerable clutter
and usually results in more readily interpreted and maintained diagrams.

Finally, there are occasions, particularly with real-time system representations, where it is necessary
to ensure that the system or some subsystem does not linger unnecessarily in some state. This con-
straint is represented in statecharts by including a small, wavy line on the left side of the upper border
of the state. Under this line would be a time value indicating when this state would automatically
transition to the next (and possibly prior) state.

The time constraint concept includes a lower bound in addition to the upper bound. The lower bound
provides a way to represent that once a state is entered, that system (or subsystem) remains there for
at least the specified minimum time. In effect, all transition signals (or inputs), whether relevant or
not, are ignored until the minimum time has passed. Neither, both, or either of these temporal
constraints can be used in conjunction with a state (Haral 1988).

With these extensions, Statecharts are effectively a more robust and flexible implementatici: of STDs.
Note that STDs can be represented using statecharts without any loss of behavioral meaning, but the
converse is not true. Although relatively simple activities can often be easily diagrammed using STDs,
such diagrams often become progressively more unwieldy and unmanageable as the complexity of ac-
tivity increases. As a general rule, the options available in statecharts become increasingly valuable
as the process being represented becomes increasingly complex.

Aswith STDs, the templates can be used to define a detailed state-driven model which converts almost
directly into a Statechart model. Statecharts are especially good at capturing “parallel” execution of
multiple state machines and can explicitly capture their interdependencies. Therefore, parallelism in
events can be easily captured. However, it is important to note that if the process engineers want to
eventually use Statecharts, they need to clearly note any parallelism and interdependencies that occur
between steps within events.

Statecharts are good for representing critical processes where simulation and enactment are important.
The tool, Statemate, will generate ‘C’ or Ada code for connecting to programming libraries where var-
ious process assets can be implemented. For a given event, if the set of tasks in a process definition
canbe limited to a set of key fundamental activities, they can be implemented to work with code gener-
ated by Statemate. Some potential problems with using Statecharts include that it typically requires
low level detail. With Statechart, it is difficult to represent roles and resources (supports) and re-
search. As with many notations, Statecharts can become quite difficult to scale-up for modeling highly
complex, large processes. Since Statecharts capture dynamic process information, a process defined
using Statecharts can be translated into a Petri net model. Dynamic models have the advantage of being
subject to assessment and simulation (providing process engineers results include time-to-completion,
dead-lock, completeness, consistency, correctness, race conditions, dead-locks, and similar dynamic
phenomena).

5-16

5. Alternative Process Representations

As is summarized in Figure 5-15, Statecharts primarily capture events, events sequencing and
coordination, and event decomposition. The execution of and interaction between events is highly
constrained. When properly constructed, it yields an hierarchically decomposable executable model.
Also shown in Figure 5-15 is the representation of throughputs in Statecharts. In practice, modeling
throughputs can be difficult because they must also be described in terms of states and state transi-
tions. However, this can be done with the resulting mode] showing the relationships between changes
in event states and changes in throughput states: each (typically) highly constrained by the other.

Sequence .

Inclusion I
Specialization O—»
Reference —_>

Figure 5-15. Statechart Relations

5.2.5 PErrI NETS

Petri nets are becoming progressively more widely used as a means for building a wide variety of
process representations. Petri nets have been successfully used to model manufacturing processes,
chemical processes, hard realtime embedded processes, etc. One of the most important characteris-
tics of Petri nets is the fact that they capture the dynamic behavioral characteristics of the system being
modeled (Figure 5-16). In effect, Petri nets can be executed.

In addition to the graphical notation, Petri nets also come with a significant body of mathematical
formalism. By relying on the mathematical substructure of these diagrams, it is possible to do a static
structural analysis of the system’s dynamic behavioral characteristics without having to resort to actually
running a simulation. This is of key importance, since it allows formal interpretation and analysis of a
process model for both desirable and undesirable characteristics (Levis 1992).

Another key factor contributing to the facility of Petri nets is its graphical nature. The basic graphical
representation principles are conceptually simple to learn and understand, yet they can be used to
build detailed representations of complex systems or models.

5-17

5. Alternative Process Representations

Process
Improvement Meetings
Allowed

p3a—1

t3a—8

t3a—7
t3a-2 |]
Presentation of Find- p3a—2 3a—5
ings and Recommenda- Process Improvement
tions to Management Moderator Schedules Meeting Held
Meeting p3a—4
p3a-—-3
: D t3a—4
t3a=3 Wait Until Time
Available on
Management Scl_ledule

Figure 5-16. Petri-Type Net

Formally, a Petri net is a bipartite directed multigraph that includes an initial marking. The nets are
comprised of two types of nodes: places and transitions that are connected by directed arcs. Arcs may
connect either a place to a transition or a transition to a place. Graphically, transitions are usually
depicted as bars, and places are depicted as circles.

The behavior of a Petri net is also simply described. A transition is said to be enabled if each input place
to that transition carries at least as many tokens as are required by the “weight” of the connecting arc.
If a transition is enabled, it may or may not fire (depending on the semantics of the model). However,
if a transition does fire, the following two events occur. First, v tokens are removed from the input
places (where v is the weight of the inbound connecting arc) and p tokens are placed in each output
place (where p is the weight of the outbound connecting arc).

One simple extension to the Petri net theory includes the concept of a transition switch. When a switch
is employed, only one of the output arcs fire after that transition is enabled. Consequently, instead
of tokens appearing at all output places (as occurs with regular transitions) only one of the output
places has a token appear. In the case of have only two output places, this behavior is exactly analogous
to an “if, then, else” statement.

Other important extensions to basic Petri nets are the inclusion of timing and stochastic characteristics.
Stochastic Petri nets are especially well suited for process modeling. These nets do not make the as-
sumption that transitions are instantaneous (Henderson and Taylor 1991). They include, for instance,
both an enabling time, and a firing time. This introduction of time almost invariably alters the execution
characteristics of these nets, just as delays in real-world activities almost invariably alter the overall
schedule governing some general process.

Petri nets, in their basic form, can easily capture the relationships between events from a coordination
and execution perspective, and they do so entirely from the information contained in the entry and

5-18

5. Alternative Process Representations

exit conditions. More complex nets can be constructed that inodel availability of resources
(represented by a token) and the nonviolation of constraints (represented by the absence of a token).
However, the templates do not automatically request timing information, so if the eventual goal was,
for example, timed stochastic Petri nets, then timing characteristics would need to be added to the in-
formation collected on the templates (and the easiest way to accommodate this is for the process engineer
to modify the Foundation template and add a field or two that captures timing behavior).

Petri nets are useful for process simulation and dynamic process analysis. If process execution issues
are critical, Petri nets can provide what might otherwise be obscure or limited insights into dynamic
behavioral characteristics (i.e., the notation itself is executable). Since Petri nets are capable of low
level models, such detailed models can be more labor intensive than higher level models using other
PNs. In software engineering, many of the processes being defined are still ad hoc and volatile. For
some organizations, it may be best to defer constructing detailed Petri net representations, because
without automated tool support such representations may be difficult to update and maintain.

As is summarized in Figure 5-17, the primary strength of Petri nets is their ability to capture highly
constrained (and especially, temporally constrained) information about a flow of events. Additionally,
through a variety of techniques, Petri nets can be decomposed (sometimes called “unfolding”) or recom-
posed (“folding”). Depending on the model being constructed, subnets might be developed that represent
specialized forms of high-level Petri nets. For this reason, the following figure shows that both events and
the constraints placed on those events can be involved in specialization/generalization relationships.

Sequence > |

Inclusion ----» :
Constraints
Specialization O—> A, R\
' »
Reference ——> \'~ L.’
g

Figure 5-17. Petri Net Relations

5.2.6 PROCESS AND ARTIFACT STATE TRANSITION ABSTRACTION

The PASTA notation is designed to allow the process engineer to define a model for any development
method or process that has defined artifacts and defined composition and dependency relations

5-19

5. Alternative Process Represent..tions

among the artifacts. Defined artifacts and relations allow for explicit artifact states upon which process
states and the overall process depend. Defined artifacts allow specification of the artifacts that record
software development. Artifacts and relations support analysis of product completeness. For artifacts
whose completeness cannot be formally specified, the line engineer can use technical reviews and is-
sue tracking to specify completeness.

5.2.6.1 Structure of Formal Generic Process Model

Figure 5-18 shows all of the key terms used in defining a process model. Arrows depict the relationships
used in defining the design model. In the bulleted list below, each term represents one relation
between two artifacts.

* Refer-to. Analysis on the software process always refers to an artifact, A-state, and P-state.

¢ Composed-of. A P-state is composed of the operations that the technologist can currently perform
and a role is composed of the activities that the role is able to perform.

* Change. An operation changes (promotes or demotes) an A-state.

* Manipulate. Operations manipulate artifacts.

subactivity
‘ | subartifact
Activity] |
- composed—of —m
Role Operationsl'__ manipulates —» Artifact
[~ executes |
. refer—to
L——— executes »| Analysis N
changes
composed—of refer~to represent—state—of
controls ‘
P-State A-State

Figure 5-18. Relationships Defining the Design Model

5.2.6.2 Artifacts and Their States

Artifacts capture the decisions made during the software development process. Examples of artifacts
are a description of the decomposition of a design into a set of components (such as modules, objects,
packages, or subroutines) and a specification of the interface of one of the com. ponents. To character-
ize the state of a software development process, the engineer must characterize the state of the arti-
facts produced during the scttware process, e.g., whether or not the software decomposition is
complete. However, merely characterizing the state of the artifacts is insufficient to describe a com-
plete software process. The process modeler must also describe the activities that may be performed
onartifacts, the conditions under which those activities are performed, and the roles of the people who
may perform them.

5-20

5. Alternative Process Representations

5.2.6.3 Process State

The PASTA model has two levels. The lower level is based on the states of the artifacts produced during
the software process; such states are called artifact states (A-states). A-states alone are insufficient
to completely describe the software process, descriptions of activities, and operations on artifacts. The
augmented states in the upper level state model are called process states (P-states). The two-level
model allows the separation of the process description from the representation used for the artifacts.
Whether an activity is performable or not depends on the state of the artifacts. At any point in time,
the set of performable activities represent the choice of artifacts on which the line engineer may work.
Those that are not performable represent the artifacts on which he may not work. The model pre-
scribes a permissive ordering of activities (and on the work of the developer) by specifying which acti-
vities are performable and which are not performable at any point. Permissive means that the line
engineer can choose from among the set of performable activities those to pursue. As with artifacts
and activities, different processes will specify different roles, such as designer, reviewer, programmer,
and manager. The logical grouping of activities in which people may participate defines the roles.

A P-state is represented as a rectangular box with two types, and only two types, of boxes that can intersect
with it. Figure 5-19 shows an example. The two types of boxes are the entrance, and exit conditions. The
difference is that the entrance condition has a P-state name subbox on the bottom of the box, but the exit
condition box does not. The P-state name can be on any edge of the P-state boxes. This gives the process engi-
neer a lot of geometric and topological freedom to draw. Figure 5-20 is an example of an artifact relation
diagram. The process modeler can draw an arrow from an artifact class to an instance of an artifact. The name
of the artifact has a dot in it to connect the class name and the name of the instance.

5.2.6.4 Translating From Process Templates to Process and Artifact State Transition Abstraction

The state information in the templates is certainly usable by PASTA, especially since different state-sets
exist for events (processes) and throughputs (artifacts). A corporation can decide their formal migra-
tion path in different ways, e.g., from process templates to ETVX to PASTA or from the templates
to PASTA directly. All of the process and activity templates can be translated to P-states. However,
if some of the activity and task templates are supported by computer-assisted software engineering
(CASE) tools, these activities and tasks will be mapped to operations in PASTA. Both the template
and PASTA have role elements so the mapping is direct. A role in PASTA is defined as a collection
of activities. The process engineer will need to collect the set of activities for the role. All of the prod-
uct, research, and resource templates will be translated to artifacts in PASTA. The cross-reference will
be used extensively to translate the collection of related information which is mapped differently to
PASTA. This is especially true for the difficult translation of constraints, which do not exist in PASTA.
In this case, a new artifact needs to be created for supporting constraints (e.g., checklists and signa-
tures), defined for the artifact, and then referenced in the pre- or post-conditions for either P-states
or Operations. Finally, all of the super-sub relationships captured in the templates can be translated
to PASTA.

As is summarized in Figure 5-21, the primary strength of the PASTA approach s its ability to capture
the relationships between events and products (throughputs) in a highly constrained manner. Note
that PASTA models show flow of events as a function of state changes in underlying throughputs.
Hence, itis the state of the throughputs that defines the state of the event and not the converse. Finally,
you should note that PASTA presents what is fundamentally a two-level process model: the P-state
level (events) and the A-state level (artifacts or throughputs).

5-21

5. Alternative Process Representations

Entrance
turn engine on off Jcar.enginc ——O Exit
car.engine| off | shift todrive on |car.engine
- i shift to neutral - net
car.engiac] on turn engine off drive|car.gear
—>cargear |park] getoff
s sie e insert k
initiating | remove key
1

—
1 car.engine] on speed up on |]car.engine
] car.gear |drive drive] car.gear
> — slow down
driving
L
|
car.cngine on shift to park onfcar.engine
car.gear |drive] shift to drive park] car.gear
parking | shifttoreverse | drive]car.gear
|

Figure 5-19. P-State Diagram Example

1 * car-passenger
CAR. car-driver g
doors door driver passenger
engine Y
— key_hole lock
gear
speed door.front-right
car-k .
i doorfront-left relation [~ o-rct
g Class =™ Instance
door.back-right
Super —»——— Sub P-Artifact
Artifact
door.back-left

Figure 5-20. Artifact Relation Diagram Example

5-22

5. Alternative Process Representations

Sequence —_— \\

Inclusion Ry J a ¢ ints

Specialization O—>
Reference ——P

Figure 5-21. Process and Artifact State Transition Abstraction

5.2.7 RoOLE INTERACTION NETS

An RIN is a visual formalism for the design, specification, and enactment of work processes that consist
of activities ranging from informal to formal and from semi-automatic to fully automatic (Singh and
Rein 1992). The RIN formalism describes processes as collections of organizational roles and their
respective interactions. Role instances and their bindings to specific individuals are part of process
instantiation.

A process is viewed as a collection of roles that communicate and interact to accomplish their goals.
Eachrole in a process consists of a partially ordered set of tasks. Tasks are either solitary actions per-
formed without the involvement of the other roles or joint actions performed with other roles. Joint
tasks can be as simple as delivering a document or as complex as negotiating a contract.

An example of the visual formalism is seen in Figure 5-22. It depicts a simple process describing: the
development of adocument. The author, reviewer, and the repository form the set of interacting roles.
Eachrole is represented by a column. Tasks appear as boxes. In the simple case shown here, tasks ap-
pear in the order of their execution: from top to bottom. Tasks requiring manual action are drawn as
{3. Interactions between the roles are signified by connecting their respective task with a horizontal
line. The interaction between roles often involves the transfer of an artifact, such as a document or
report. In the notation, a transfer is indicated by curved flow lines from the source __/ _ toits

destination ~~— T\.

The complete notation includes many more features than are shown in this simple example. The order
of tasks within a role form a partial order and not the simple linear order implied by the example.
Alternation and iteration of tasks can be specified. Further, tasks can themselves be a process, thus
providing a powerful abstraction/decomposition mechanism.

5. Alternative Process Representations

Reviewer
Generate Document
Transfer document (from Author to Reviewer and Repository)
Read document and generate issues x
N
Transfer issue list (from Reviewer to Author and Repository) X

Respond to issues

Transfer responses (from Author to Repository)

Figure 5-22. Role Interaction Net

Tasks have a number of attributes reminiscent of the ETVX formalism. These attributes serve as both
description and additional support for process enactment. Figure 5-23 shows a task with its attributes
expanded. The goal is a descriptive title for the task, €.g.“Generate Document.” The objects attribute
lists the artifacts (inputs and outputs) necessary for performing the task. The entry and exit conditions
are the necessary conditions to begin and terminate a task. In addition to these conditions, the role
occupant is required to initiate and terminate all manual tasks. The execution condition defines an
invariant which must be true throughout a tasks execution. Failure of this condition causes the task
to abort. The behavior describes the actions to be performed by the task. For automatic processes, this
behavior is written in some machine-interpretable script language. Measurements define the metrics
collected by the task. Finally, the permissions attribute defines the degree to which a role occupant
can modify the task.

Rolel

Goal

Entry Condition:
Objects:

Behavior:

Execution Condition:
Exit Condition:
Measurements:
Permissions:

Goal

Figure 5-23. Role Interaction Net Templates

The RIN notation is supported by formally defined operational semantics. Both Singh and Rein
(1992) and Singh (1992) provide formal senantics, in terms of Petri nets and STDs. These publications
also provide further details and examples of the notation.

5-24

5. Alternative Process Representations

RINs seem to have a number of features that make it a desirable process modeling notation:
* Appealing visual notation
* Powerful abstraction/decomposition mechanism
e Well defined operational semantics
However, RINs are a relatively new notation and suffer from:
* Lackof industry wide exposure.
* Limited real-world application.
* Few supporting tools.

From the perspective of the objects and relationships defined within the templates (Figure 5-24),
RINSs capture all four of the meta-classes: events, throughputs, supports and constraints. Although
inheritance is not an explicit part of the model, decomposition (or inclusion relation) is strongly
supported through role decomposition.

7 TN
(
vents‘)
JAR
// S N
N\ I N\ TN
\/ 'Ihro:gl;p/uts | stx\;%oé's I-)
N | /
Sequence @ ——p \ i p /
Inclusion --=> a)
Specialization O—p A mtss
Reference @ ——-p \ - S

Figure 5-24. Role Interaction Net Relations

5.3 SUMMARY

This section has described a small but representative selection of other notations that may be used in
the performance of process definition and modeling. As stated previously, template-based models can
be used as a preliminary effort before constructing process models based on one or more of the other
PN, or the templates may be used to extend or augment information that has already been captured
using an alternative notation.

5-25

5. Alternative Process Representations

It should again be stressed that there is no approach that is universally better or universally worse for
all organizations under all circumstances. Instead, the choice of a notation is a highly site-specific
choice and should involve evaluation and consideration of issues discussed in both this section and
Section 4.3 (representative power), Section 2.4 (common notational characteristics), Section 2.5
(choosing a notation), and Section 2.6 (benefits to the template-based approach).

Finally, if you remain uncertain on which notation to use for process definition and modeling, the
Consortium recommends you start with the templates and supporting techniques proposed in this
guidebook. The primary advantage of this approach is that it is designed to allow you to adapt, tailor,
and even fundamentally alter the set of templates (and supporting graphical notation) to fit the specif-
icneeds of your environment. Once you are using a relatively stable set of templates, you can examine
the templates and their characteristics and compare and contrast them with the characteristics of al-
ternative notations (such as those presented in this section). As related in Section 2, the “better” nota-
tion will be, of course, the one that most completely matches your definition and modeling
requirements.

5.26

6. PROCESS REPRESENTATION PROGRAMS

The material in this section (Figure 6-1) discusses issues, approaches, and options relevant to

commencing and continuing a program for process representation. This discussion examines how you

can transition your organization or group into process definition and modeling, and then it briefly
“discusses where such efforts can eventually lead.

Section 6.1 presents material on introducing process definition and modeling into your organization.
Section 6.2 introduces the subject of metrics and discusses how process definition can support a pro-
gram of process and product measurement. Example metrics are shown, and discussion is provided
correlating various metrics to different levels of SEI process maturity. Section 6.3 provides an over-
view description of the Evolutionary Spiral Process from the perspective of process representation.
Section 6.4 discusses the use of process representation as a tool for process management, and Section
6.5 looks beyond conventional process management approaches and discusses the support process
representation gives to automated process management within highly integrated environments.
Section 6.6 briefly summarizes this material.

Q) . &)
Introduction Templates
)
Overview and
Foundation

\
1 AN
A\
1l =
Y] Appendices
Summ,ary —Examples-—

Figure 6-1. Guidebook Organization View 6

6.1 INTRODUCING PROCESS DEFINITION AND MODELING INTO AN
ORGANIZATION

Institutionalizing process definition involves a variety of factors. First you need to be motivated. Why
should you attempt to develop process models? What are the costs? What are the benefits? Second,
there are logistical aspects. Who should perform in what roles? Third, there are practical issues. How
does one get started? If the initial steps yield promising results, what should be attempted next? These
are the issues examined in the following material.

61

6. Process Representation Programs

6.1.1 MOTIVATION

As stated in Section 1, the techniques described in this guidebook can be used:

As a common foundation for process analysis, design, development, and documentation.
To facilitate the development of process-oriented guidebooks.

To improve the usability of process-oriented guidebooks.

To facilitate process training and education.

To reduce the cost of developing process-oriented guidebooks.

To create a defined process from a repeatable process.

To create arepeatable process from the analysis of independently successful process activities.
To facilitate process management.

To facilitate process measurement.

To facilitate process improvement.

To facilitate process automation.

To design and develop process models.

As a migration path to and from process models based on existing notations (SADT, ETVX,
STDs, etc.).)

Once instituted, process definition and modeling provides the following benefits to its users:

It can be used to develop precise, unambiguous process descriptions.
It provides a basis for building and integrating tools that automate parts of the process.
It facilitates enforcing standard practices.

It enables all concerned parties (technologists, developers, managers) to agree on a standardized,
documented process.

It provides a basis for process improvement through improved process analysis and potentially
faster process evolution.

It enables management to potentially improve process efficiency by facilitating the establishment
and collection of process metrics and related status information.

All of the above can be summarized in the following statement: the key advantage to process definition
and modeling is increased clarity, increased understanding, increased control, and increased flexibil-
ity with regard to processes being practiced or considered. Clarity is increased because models are

6-2

6. Process Representation Programs

intended to abstract out unimportant information (with regard to a specific objective) in order to better
emphasize or highlight pertinent information. Understanding not only increases with clarity but also
because process details are collected and organized in a way that allows ready access, study, and modi-
fication. Control is increased through instantiating process models to derive project-level process
models which offer sufficient detail for managers to track a project’s evolution (as guided by the over-
all process). Finally, flexibility is increased because an organization can experiment with alternative
-process models, as opposed to alternative processes.

Through the use of models, tentative or proposed process changes can be explored through constructing
and examining alternative models instead of dedicating real resources and funds toward some type
of pilot project to evaluate proposed process changes. While the model cannot provide the same types
of insight a pilot project can, itis certainly true that any process problems corrected through examining
the model are less costly than correcting those problems during actual performance of the process.

6.1.2 PROCESS DEFINITION AND MODELING STAFF

When introducing or expanding a process definition and modeling effort you must determine which
roles are necessary for supporting the work and what types of skills are desirable for people perform-
ing those roles. Arguably, three to five matrixed engineers and one matrixed manager are necessary
for establishing a process representation (definition and modeling) program. Because some training
is involved, there is too much risk in training only one person and then having the entire program de-
pend on the efforts and availability of that person. In principle, it is better to have more people contrib-
uting smaller amounts of their time than to have fewer people contributing significant amounts of
time. Once a program is well underway, it is ideal to have one or more people work their way into
essentially full-time responsibilities as “process engineers.”

The preferred candidates for such work are those that already have a process-oriented background.
This group includes people who have had experience in systems analysis and design. These individuals
have already had considerable exposure to process control at a systemic level. Also included are those
individuals who may have received exposure to systemic process issues through involvement with total
quality management, process assessment efforts, and similar activities.

It should be noted that because the templates and the techniques for their use are sufficiently easy,
the learning curve involved in becoming proficient in their application is comparatively nominal. From
this perspective, the benefits of having several people trained and potentially available (as matrixed re-
sources) for process representation efforts is relatively low-cost and low-risk. This is especially true when
compared to the value derived from the increased likelihood of greater variety of insights and experience.

As discussed in Section S, the templates can be used as a point of departure for alternative process
representation notations such as ETVX, SADT, and Petri Nets. If such notations are one of the eventu-
al goals of the process representation effort, it is highly advantageous to select process engineers par-
tially as a function of whether they have a background in the alternative notation of choice. In all cases,
using alternative notations for constructing process models is consistent with their use in constructing
software models. Consequently, notation-specific skills previously acquired by process engineers can
be applied to process representations using those notations.

6.1.3 GEITING STARTED

Once you have identified who will be working as process engineers, the next step is to identify the first
target domain to be represented. The Consortium suggests that process definition and modeling, as

6-3

6. Process Representation Programs

an organizational process, be the first representation constructed. Then performing subsequent
process representation effort, the process engineers will be following the model they constructed
during their first effort.

Before actually performing process representation, you must train the process engineers (and if possible,
those who will be managing the efforts). Again, the templates and their use is nci complex; therefore,
training can be limited to two days or less. However, this depends on the number of related topics
introduced during training (such as metrics, process maturity levels, and alternative process notations).

There are several example approaches in this guidebook; when you first commence a program of process
representation, you can use these example approaches as suggested guidelines. There is a usage sce-
nario presented in Section 4, and further examples exist in the appendices. As indicated in these exam-
ples, the suggested approach is that you initially construct indented lists, then construct graphical
depictions, then fill in the templates using information derived from the graphical model and the
indented lists, and finally, establish bindings or relationships between the templates.

Once you have a sufficiently complete process representation, it can be analyzed for areas of risk and
for opportunities of improvement. Often, simply having an entire process detailed in an easily accessi-
ble and understandable format allows you to think about and discover risks and opportunities. A sys-
tem of metrics can be constructed to ease model analysis by using more objective criteria. For example,
as discussed in Section 4, the templates can be examined with regard to the average number of entry
criteria and average number of exit criteria specified for events. Then, events whose criteria signifi-
cantly exceed the average can be re-evaluated to determine whether such excessive binding to other
events constitutes unusually high risk.

The eventual goal of analyzing models for risks and opportunities is to derive new and improved models.
The new models can then be carefully analyzed for consistency, completeness, and potential problems.
When management is confident that the proposed process is well understood and has sufficient potential
benefits, they may decide to institute an exploratory or pilot project based upon the proposed process.

6.1.4 ONGOING IMPROVEMENTS IN PROCESS REPRESENTATION

Once you have used the templates to construct one or more process models, you will have insight into
how the templates can be improved and explicitly tailored toward your needs and the nature of the
models being constructed. As discussed in Section 4, you can add new fields, develop new classes of
templates, include new meta-classes, and introduce even further levels of abstraction. In all cases, it
is important to monitor the benefits when contrasted against the additional effort and complexity
introduced by such extensions.

Limited space is one of the principal problems with hard-copy renditions of the templates. Although
the one-page format presented in this guidebook makes presentation, discussion, and initial use of the
templates easier, the single page format quickly becomes short of space when attempting to model
large-scale complex processes. One suggested approach to alleviate this problem is to represent each
template as a three page packet. The top page would contain foundation fields only and would be iden-
tical in format on all packets. The second page would contain meta-class fields only. The third page
could contain only those fields unique to that specific class. This approach both preserves the advantages
of the current template’s composition and considerably expands the space available for use.

A better, if more ambitious approach, would be to automate support for process representation and
towork with electronic versions of the templates. This not only allows for virtually unlimited field sizes

6. Process Representation Programs

(constrained only by limitations in a supporting database, for instance), it also introduces the possibility
of active links between the templates. Relatively trivial automated support, such as through hyper-
text, allows you to easily follow relationships between templates. This greatly improves the ease with
which templates can be developed, analyzed, and maintained.

Once you are familiar with the development and use of process representations within your organization,
you can look for ways in which process modeling can support other organizational endeavors, and vice
versa. One major candidate for potential mutual support is with an organizational metrics and mea-
sures. Although many organizations have established measurement programs without using process
representations or models, you should note that these programs can readily facilitate each other.
Hence, you may want to tailor your templates to directly support a program of process measurement.
As discussed in the next section, metrics are a excellent means by which insights are gained into dynamic
process characteristics.

6.2 METRICS

The purpose of metrics is to increase objectivity by providing a common measure with which to
compare different phenomena or the same phenomenon at different times. However, in addition to
the considerable benefit derived from using metrics, there is also the risk of mismeasurement, or mis-
interpretation. The following discussion covers important characteristics of metrics: both from the
perspective of benefits and from the perspective of associated risk. A set of inspection-related exam-
ple metrics are shown as an example. Material at the end of this subsection shows information
extracted from the Consortium’s Sofiware Measurement Guidebook (Version 2.0) (Software Productivity
Consortium 1992b).

6.2.1 IMPORTANT CHARACTERISTICS
There are many important aspects to metrics, but four 6f the most important are:
¢ Metrics must correlate to the phenomenon being measured.
¢ Metrics must measure something of interest.
¢ Metrics must reflect something that can be influenced.
¢ Metrics must support making predictions.

From one perspective, metrics are intended to facilitate insight into some phenomenon in the real
world. The intent of the metric is to change in some manner that is consistent with changes in the phe-
nomenon being measured. If a metric does not correlate to what it should measure, it is useless. The
more closely changes in the value of a measurement parallel change in the characteristics being
measured, the greater the usefulness of that metric.

In addition to correlations, metrics must also measure something that is interesting. Interesting is
invariably subjective, but the concept is crucial nevertheless. It is too easy to define a large collection
of metrics and spend disproportionate amounts of time and effort measuring characteristics that yield
little, if any, valuable insight. From this perspective, interesting metrics are those that provide you with
insights that affect your decisions or your actions. Clearly, when you find that you largely ignore a par-
ticular metric and it does not influence your thinking, that metric has ceased to be interesting for you.

6-5

6. Process Representation Programs

Another key characteristic of metrics is that the measure relates to something that can be influenced.
There is little value gained by measuring something that has no relation to anything that can be in-
fluenced. Curiosity may be satisfied, but if the metric monitors something completely outside your
sphere of control and if nothing related to that metric can be influenced by you, the metric does not
allow adjusting a process to achieve changes in the data reflected by the metric. If the metric can in
no way provide you with any useful guidance on how to alter the phenomenon being measured, or your
actions with respect to that phenomenon, then the metric is essentially meaningless.

Finally, it should be stressed that one of the primary benefits to metrics is their use in validating
predictions. For example, when proposing changes to a process model, you should attempt to predict
what effect the changes will have on the metrics monitoring that process. When proposing a new or
modified process, such proposals should be accompanied by claims to the effect that metric-a will go
up by x units and metric-b will be reduced by about y percent, etc. One value to such predictions is that
they more precisely communicate the expected benefit from instituting a particular change.

Of even greater value is the fact that this approach can contribute to verifying whether the actual
results of the new process match the predicted results. If results are generally as predicted, there can
be a higher degree of confidence that the predicted benefits will likewise be manifested. If changes
in the metrics are running opposite to their predicted direction, it may be time to consider reinstituting
the original process and re-examining the new process.

Please note, however, that it is not always the case that when the predictions are wrong, the process is
wrong. It could be that the metrics are not measuring what they seem to be measuring or that there are
confounding influences affecting the measurement that are not being considered in the interpretation.
Simply put, the problem may not be what is being examined, but the way it is being examined. Fortunately,
using metrics to make predictions is a self-correcting problem. Either the metrics are high-quality and our
ability to make predictions improves, or the metrics are not high-quality and the lack of predictability
causes you to re-examine and improve the metrics. In any event, you gain insight and make progress.

6.2.2 METRIC SUPPORT FOR PROCESS TRACKING AND COST MODELING

This material describes activity-based cost models and how you can apply them in starting your process
modeling effort. To implement process models, you need to accumulate software process and product
information. Many existing accounting systems maintain costs in terms of activity-based models.

This section presents methods now used to work with the software development processes in your
organization. The methods express each major process in terms of an activity. The methods are used
by management for activity-based cost estimation. Activity-based models use a bottom-up approach
to software development cost estimation based on an analysis of the costs of the individual activities
that compose the software development process. Activity-based models are especially effective in an
environment in which you have established a software experience database and where you use that
database to feed back information about the process to improve the process.

The cost estimation methods usually base estimates on a function of the software product size. In turn,
the development schedule is estimated as a function of the cost estimates. The size, cost, and schedule
parameters are closely related.

The methods presented in this section roughly correspond to a progression through the SEI process
maturity levels. If your software development organization is at process maturity level 1, the initial

6. Process Representation Programs

level, you probably have no experience data in a database. By the time your software development
organization is at SEI process maturity level 2, the repeatable process level, you will have established
a software experience database and accumulated sufficient data so that you can calculate unit costs
for the main activities of software development (e.g., requirements definition, design, code and test,
integration and test) and apply them on a project basis.

An activity-based model is built by assembling and ordering the activities that compose the development
process to be used to produce the intended software product. The activities that form your develop-
ment process may be from a previously used process, or they may come from a modified version of
a previous process with some activities removed and other activities added. Alternatively, they may
be a selected subset of activities from a “menu” of activities. An activity-based model enables you to
begin by using the resource consumption (cost) for each of the activities in the development cycle, such
asrequirements analysis, preliminary and detailed design, code and unit test, computer software com-
ponent (CSC) integration test, and computer software configuration item (CSCT) system test. Your
project may not use all of the “repertoire” of possible activities. For example, if you are developing
a new version of an existing system, you might not have any preliminary design in your development
process. Define your software development cycle in terms of known and measurable activities based
on your organization’s experience as contained in your experience database.

‘You may use the activities in Table 6-1 as a menu from which to select activities, if appropriate, to form
your development process. The ordering of the activities in Table 6-1 is a natural order for presentation
but not necessarily the expected order of development.

Table 6-1. A Basic Activity-Based Development Model

Subactivity/Product (LM/KSLOC)
“Process” or Activity (DOD-STD-1521B am‘! DOD-STD-2167A) New | Reused

Requirements analysis System/segment design document 031 0.020

Software development plan 0.13 0.010

Preliminary software requirements specification 0.25 0.020

Preliminary interface requirements specification 0.04 0.002

Software requirements specification 0.39 0.030

Interface requirements specification 0.04 0.002

Preliminary design Software design document—preliminary design including { 0.52 0.030
design reviews

Preliminary interface design document 0.07 0.005

Software test plan 0.13 0.005

CSC test requirements 0.01 0.000

Detailed design Software design document—detailed design including 0.82 0.050
design reviews

Interface design document 0.07 0.005

CSU test requirements and test cases 0.01 0.000

CSC test cases 0.02 0.000

Contents of CSU and CSC software development files 0.00 0.000

Software test description—test cases 0.04 0.006

6-7

6. Process Representation Programs

Table 6-1, continued

Coding and CSU testing | Implement source code including code inspections 1.48 0.070
CSU test procedures 0.03 0.000
CSU testing 0.73 0.050
CSC test procedures 0.25 0.030
Contents of CSU and CSC software development files 0.00 | 0.000
CSCintegration and testing | CSC integration testing 0.74 0.200
Software test description—-—formél test procedures 0.10 0.020
Updated source code—error correction 0.10 0.010
Contents of updated software development files 0.00 0.000
CSCI testing CSCI testing including acceptance testing 0.73 0.150
Software test report 0.01 0.000
Updated source code—error correction 0.05 0.010

Table 6-1 contains activities from DOD-STD-2167A (Department of Defense 1988) and
DOD-STD-1521B (Department of Defense 1985) and typical unit costs derived from actual experi-
ence in developing embedded software development software for development of 25 large (over 500
KSLOC [thousand source lines of code]) real-time command and control software systems. The unit
costs shown in this table are for guidance.

The activity-based model assigns a unit cost to each activity and estimates costs in labor months (LM)
or labor hours (LH) by multiplying the size of the software product (KSLOC or SLOC [source lines
of code]) by the assigned unit cost (LM/KSLOC or LH/SLOC). The general form of the activity-based
model is based on the operations of adding, modifying, reusing, and removing code. The general form
of the model is: .

n 1
TLM = > (LM/KSLOC), ;44eq * KSLOC, 4409 + O (LM/KSLOC), 1oiited * KSLOC it
i=1 i=1

n n
+ > (LM/KSLOC); pseq * KSLOC,ppq + D (LM/KSLOC); e oves * KSLOC, 0rea

i=1 i=1

where TLM indicates the total effort in LM for all n activities and (LM/KSLOC); ; indicates a unit cost
in LM/KSLOC for activity i and code category j.

You should view the unit costs in Table 6-1 as an example or as guidance based on specific experience
in the aerospace industry with developing real-time command and control software. The same meth-
odology would be used for estimating the costs of developing software for different industries. Your
organization’s experience coupled with your judgment as a cost estimator may lead to a modification
of some or all of these unit costs—up or down. For example, in a situation where your organization
wants to integrate many CSCs, you may want to increase the unit cost for CSC integration test to ac-
count for additional complexity. The same is true of the functional testing of the software system where
you integrate many CSClIs in the CSCI test.

You should not view these unit costs as fixed quantities that must be applied with no modification.
They represent guidance to the cost estimator and should be modified to represent the software

6-8

6. Process Representation Programs

development environment in question. For example, if the unit cost for implementing source code as
shown in Table 6-1 were to be modified, in the judgment of the estimator, to reflect the effects of a
programming staff inexperienced in the language to be used, which would cost 20 percent more than
the given unit cost, and of a strong management team, which would cost 10 percent less that the given unit
cost, then the modified unit cost for the coding activity would be 1.48(1+.20—-.10)=1.63 LM/KSLOC.

If a set of standard or guideline unit costs based on such a database, as suggested above, is not
available, then you can use the Constructive Cost Model (COCOMO) detailed model, specifically the
modern programming practices (MODP) effort multipliers shown in Boehm (1981). Using this
scheme, you can modify the baseline unit cost for each activity from requirements through integration
and test by a multiplier factor to adjust for the degree of adherence to modern programming practices.
Boehm (1981) gives a set of factors to be used in this case. These factors can be used to develop
worksheets to support cost calculations (see Table 6-2).

Table 6-2. Worksheet Cost Calculations for an Activity-Based Model

Project Name EXAMPLE Date 11/3/92
CSCI/Product Name CSCI19 Language JOVIAL

Unit Cost Measurement (LM/KSLOC, LH/SLOC, etc.) LM/KSLOC
New Code Size 450 Reused Code Size 710

New Code
Base Estimator
Activity Unit Cost Modifier Unit Cost Cost (LM)
Preliminary design (incl. documentation) 0.59 1.20 0.71 3195
Detailed design (incl. documentation) 0.89 . 120 1.07 481.5
Code and CSU test 2.21 1.10 243 1,093.5
CSC integration test 0.74 1.00 0.74 333.0
Error correction (for CSC test) 0.41 1.00 0.41 184.5
CSCI test 0.73 1.00 0.73 3285
Error correction (for CSCI test) 0.28 1.00 0.28 126.0
Total 5.85 6.37 2,866.5
Reused Code
Base Estimator
Activity Unit Cost Modifier Unit Cost Cost (LM)

Preliminary design (incl. documentation) 0.035 1.00 0.035 248
Detailed design (incl. documentation) 0.055 1.00 0.055 39.0
Code and CSU test 0.120 0.00 0.000 0.0
CSC integration test 0.200 1.00 0.200 142.0
Error correction (for CSC test) 0.060 1.00 0.060 42.6
CSCI test 0.150 1.00 0.150 106.5
Error correction (for CSCI test) 0.040 1.00 0.040 284
Total 0.660 0.540 3833
Overall Total LM 3,249.8

6-9

6. Process Representation Programs

Unit costs must be periodically recalculated since they will change through time as more experience is
recorded and as the development process is improved. Unit costs will likely decrease in the long term as
the cumulative effects of your process improvement efforts change take effect.

Table 6-3 presents the unit costs of an Ada language development model (Cruickshank and Gaffney
1992) and compares it with the unit costs shown in Table 6-1. Industry experience shows that in general
the costs of developing software using the Ada language is more costly than developing software using
standard, more established languages. The higher cost for Ada is due to many factors including the
increased functionality that Ada provides and industry inexperience with Ada (the latter of which, of
course, decreases as Ada experience is accumulated within industry). '

Table 6-3. Ada Development Model

Ada Model Basic Activity-Based Model
Activity LM/KSLOC Percent LM/KSLOC Percent
Requirements analysis 0.74 74 1.16 16.4
Preliminary design 1.67 16.7 0.73 10.3
Detailed design 222 222 0.96 13.6
Code and unit test 222 222 249 - 35.2
CSC integration test 1.60 16.0 0.94 13.3
CSCI test 1.55 15.5 0.79 11.2
Total 10.00 100.0 7.07 100.0

Often, a CASE tool is seen as a potential approach for reducing project cost (Table 6-4). When considering
the use of a CASE tool, you must determine (or estimate) its effect on specific activities in the software
development process. This consideration should be tempered by a general recognition of the fact that
some aspects of an activity are subject to automation while others can only be done by a person. For
each activity, you should determine the impact of the CASE tool application on:

* The reduction in the unit cost of doing the activity.

* The additional cost, if any, on this and any other activity of applying the case tool.

* The inputs to and the outputs from the activity.

¢ The determination of how and when the activity is completed.

¢ The quality of the activity.

¢ The sequence of activities.
‘You must not only consider the potential impacts of the application of the CASE tool on each activity

but also the possible interactions of the applications of several CASE tools. If investment (in the tools

or the process) is the same for each application, you must recognize the possibility of a decreasing
return on investment.

6-10

6. Process Representation Programs

Table 6-4. Top-Down Cost Estimating Example

Program Cost-Driver Proportion | Cost (LM)
Software development 0.30 2,500
Computer hardware development 0.00 0
Systems engineering 0.16 1,333
Test and evaluation 0.16 1,333
Manufacturing 0.00 0
Product support 0.06 500
CM, DM, QA 0.06 500
Program management 0.26 2,167
Total 1.00 8,333

Finally, you cannot assess the (potential) impacts of CASE tools without the detailed knowledge of
the process that an activity-based model, backed up by an extensive experience database, provides.
As an example, suppose that your development process is like the Ada model shown in Table 6-3; and
suppose that you estimate that the application of the CASE tool results in a 30 percent reduction in
the detailed design costs. Then the unit cost of detailed design will become (2.22)(0.70)=1.55 LM/
KSLOC, all other activities being unaffected. This reduces the overall unit costs from 10.00 to 9.33
LM/KSLOC. Such calculations are impossible without a fundamental understanding of the activities
that comprise your process, a history of metrics associated with those activities, and related products,
resources, etc.

6.3 REPRESENTING THE EVOLUTIONARY SPIRAL PROCESS

A robust notation for process definition and modeling must be able to capably represent not only
standard processes, but also emerging or progressive processes that reflect the latest research and ex-
perience from government, industry, and academia. The Consortium has developed and documented
a new process approach based on the work of Barry Boehm. The following is excerpted material from
the Evolutionary Spiral Process Guidebook and technical report, and has been augmented to include
discussion on building process models to support ESP. For further information and details on the
benefits and usage of ESP, please refer to the Consortium’s Evolutionary Spiral Process Guidebook
(Software Productivity Consortium 1991) and the Process Engineering With the Evolutionary Spiral
Process Model (Software Productivity Consortium 1992a).

The ESP model conveys that particular patterns of activities can be beneficial in software process and
project management. One key distinguishing characteristic to this approach is the importance given
to ongoing risk management. In the most general sense, the sequence of activities are classified
through four quadrants (modified from the Spiral Model by Boehm [1986]), as shown in Figure 6-2.
In addition to the four quadrants, the ESP model identifies and defines key activities essential for suc-
cessfully using the ESP approach, also shown in Figure 6-2. Most of the activities explicitly included
in the ESP model are the key management, review, and commitment activities missing in traditional
process models, such as the Waterfall Process Model.

6-11

6. Process Representation Programs

iti 2. Anal d Avert Risks
1. Define Approach D;t;::_l:won lyze and Ave
Identify

Develop/Update Risks AnalF " yze Risk

Estimate of the EYaluate Review

Situation R:sks' SN

,* PlanRisk | Committo
Define Project/Cycle .’ Aversiog, Aversion Plan
~ Objectives Lol L. ;
— Success Criteria P __.-‘A
Mana — Alternatives L. vert
Reviegwa:::t — Constraints P Risks Commit to
Commit Proceed ; Tl Plan and D:]velopn.lent
Update Master Plan » Seel Schedule ternative
!) -
Develop/Update) BTSN
Engineering and) Monitor and Commit
Project Procedures K Review to Plan
. J Develop
Review ! and Verify
Progress) Product
,/ Baseline
Product

Technical
Product
4. Manage and Plan Re\"iew 3. Develop Product

Figure 6-2. The Evolutionary Spiral Process Model

When constructing a model of an ESP-based process, it is important to note that a project traverses
all four quadrants of the ESP model a cycle at a time. A cycle is a complete rotation of all four quad-
rants of the spiral model which, when completed, matures the product by the amount defined in cycle-
specific objectives and success criteria. A spiral is one or more cycles which, when combined, create
a specific accomplishment, such as a deliverable or key artifact. An example spiral consisting of four
possible cycles is shown in Figure 6-3.

The amount of resources dedicated to a particular activity can, and typically will, vary from one cycle
to the next. Additionally, in virtually all cases the completion level of throughputs (or products) will
increase with each successive cycle. Typically, early cycles concentrate on creation of a development
plan and risk aversion activities. Later cycles concentrate on product development activities. Tem-
plate-based process representations can capture this cyclic evolution by having multiple sets of tem-
plates—each set dedicated to a given cycle. This facilitates not only indicating changes in levels and
types of support, but it can also clearly distinguish between throughputs or products at different stages
of completion. Alternatively, a single series of event templates can be used to represent the cyclic ac-
tivity, and iteration can be captured through the use of state-sensitive throughput descriptions and
logical relations.

6-12

6. Process Representation Programs

1. Define Approach

Definitios
Review

2. Analyze and Avert Risk

L
L
]
Management ' .
Review and 4. Commit to
Commit to ! Development
Proceed ' Alternative
—)
, Bud
Uptato SDE, Bu g:g-.‘ EaS,

-
-

Rediew Progress (Actualsversus Estiies; ~
ObjectiVey, Success Criteria, Alternatives,
Constraints)

L
L
,
. - ?
4
[}
)

14
HOqpoORYRZ-N vy W

4. Manage and Plan 3. Develop Product

Figure 6-3. An Example Spiral

The ESP model specifically recognizes the first cycle of any spiral as a project-level planning cycle;
that is, defining the high-level project process definition, and documenting high-level objectives, suc-
cess criteria, alternatives, constraints, risks, plans, and oversight strategies for the entire project. Sub-
sequent cycles focus specifically on the work to be accomplished for that particular cycle or the
detailed process definition in terms of the current cycle objectives, success criteria, alternatives, con-
straints, risks, plans, and oversight strategies. Knowledge gained as a result of working through a cur-
rent cycle is used to review and update the project plans and process definitions initially developed
in the first cycle.

The following subsections briefly discuss how a project traverses each of the four quadrants and
performs the activities within each quadrant, and presents considerations for using the templates within
each of these quadrants.

6-13

6. Process Representation Programs

6.3.1 THE FIRST QUADRANT: DEFINE APPROACH

A project’s approach definition establishes the ground rules for measuring progress at a high-level for
the project or at a more detailed level for the current cycle.

During the first cycle, the project develops an Estimate of the Situation (EoS) which documents project
level process drivers, including objectives, success criteria, alternatives, constraints, internal and ex-
ternal factors, and other information. In an environment which has predefined process architectures,
and predefined process assets, these resources would be included in the EoS. The definition review
at the end of the first quadrant authenticates and establishes consensus on the project level informa-
tion contained within the EoS. During subsequent cycles, the project updates the EoS to include cycle-
specific objectives, success criteria, alternatives, constraints, internal and external factors, and other
information which will drive the process for that specific cycle. The definition review serves to
authenticate and establish consensus on the cycle specific information.

The specific concepts and activities of the first quadrant are graphically depicted (using the SADT
notation described in Section 5) in Figure 6-4.

beyond 1st cycle)

Objectives, Success Criteria,

Define Alternatives, Constraints, Risks
Project/Cycle

EoS

Develop/Update
Estimate of the
Situation (EoS)

»| Definition EoS —
Review I

Alternatives Inconsistent With
Objectives and Constraints

Figure 6-4. Define Approach Activities

6.3.2 THE SECOND QUADRANT: ANALYZE AND AVERT Risk

A project performs risk analysis and aversion to help “identify, address, and eliminate risk items
before they become either threats to successful software operation or major sources of rework”
(Boehm 1989). Risks are the potential undesired outcomes or missed opportunities which affect the
project’s defined objectives and success criteria. Risk analysis and aversion is a defensive management
approach that focuses on project uncertainty and attempts to control project outcome.

During the second quadrant, a project concentrates on the factors, or risks, that may oppose project or cycle
success. Most software development projects inherit or introduce some degree of risk. A project

6-14 I

6. Process Representation Programs

specifically addresses these risks in the second quadrant of the ESP model by evaluating the alternatives
defined in the first cycle in terms of the project constraints. The primary result of this evaluation is
a quantified list of risks for the project and/or current cycle. Risks can be quantified by risk exposure,
which is the product of the probability of failure (the chance of an unfavorable occurrence or the risk
“bet””) and the cost of failure (what happens if the risk “bet” is lost).

Also, during the second quadrant, a project should select one of the alternatives determined in the
first quadrant, but only after its risks have been analyzed and averted to the extent possible. The selec-
tion and risk classification of alternative processes can be facilitated through having a variety of viable
process models. The risks of any given approach can be analyzed and determined as a function of the
characteristics of that specific cycle of the process and the “best” process selected as a function of risk
mitigation. It is not necessary (or even possible) for a project to eliminate all risks during product de-
velopment. The intention is to limit the risk exposure so that the success of the project is not in jeopar-
dy. If a project finds itself in a zero risk situation, then the ESP model can become equivalent to other process
models such as the Waterfall, Evolutionary, or Transform Process Models, as mentioned in (Boehm 1988).

Awailability of the following resources may facilitate the second quadrant risk analysis and aversion
activities :

* Experienced Risk Analyst. The ESP model depends on risk management to determine appropriate
software development activities and their sequence. Although the project manager can func-
tion as the risk analyst, a project may find it desirable to have someone properly trained in risk
analysis and management techniques. When building ESP-based process models, an explicit
role of risk analyst should be predefined and bound to the activities of the second quadrant,
regardless of the cycle.

* Budget for Risk Activities. DoD contracts specifying DOD-STD-2167a require some form of risk
management (Department of Defense 1988, paragraph 4.1.4). As a general rule, expect to allo-
cate the following portion of a project’s software development budget for risk management
activities (Charette 1991):

— One to three percent for low-risk projects.
— Three to five percent for medium-risk projects.
— Five to seven percent for high-risk projects.

The reader should note the importance of metrics (as discussed in Section 6.2) for building organization
history of project risk profiles. What types of projects introduce which types of risk, and how much?
Which products increase risk, and does that risk increase or decrease over time? Your process definition
and process models can explicitly represent risk management heuristics, but deliberate measurements
must be the basis from trom which those heuristics are constructed.

The specific activities of the second quadrant are:

* Identify Risks. Determine and categorize risks for the project and/or current cycle.

* Analyze Risks. Determine the likelihood of occurrence and consequence of each risk, and rank
risks.

6. Process Representation Programs

* Evaluate Risks. Identify and evaluate possible risk aversion strategies.
* Risk Review. Review by project team the risk identification, analysis, and evaluation activities.
* Plan Risk Aversion. Select and plan for the most appropriate risk aversion strategy.

* Commit to Aversion Plan. Formal recognition commitment to the selected risk aversion plan
by all stakeholders.

* Avert Risks. Perform to risk aversion strategy.

The second quadrant risk analysis and aversion activities are graphically depicted in Figure 6-5.

l Definition Review Commitment (first quadrant)

EoS

i Identify,
S An X

Evaluate Risks
. . Aversion Strategies
Aversion Strategies Risk Review | & Commitment
AR .|
Repeat Plan Risk

Aversion

Aversion Strategies

. . Commit to i
Plan for Aversion Strategies Aversion Plan & Commitment
Ly

Rppp,at i .I
. Development
Avert Risks Alternative(s)
Commit to —
Development [———3

| Alternative(s)
Alternative(s)
Repeat

Figure 6-5. Risk Analysis and Aversion Activities

6.3.3 THE THIRD QUADRANT: DEVELOP PRODUCT

A project plans, schedules, and performs the technical activities for the cycle in the third quadrant.
The activities should be driven from the development alternatives committed to in the second quad-
rant. The results of performing the activities should directly support the cycle objectives and success
criteria defined in the first quadrant.

The specific activities that a project performs in the third quadrant are:

* Plan and Schedule. Identify, organize, schedule, and bind technical activities after any risks
associated with development alternatives for the cycle have been averted.

* Commit to Plan. Review and commit to the cycle plans.

6-16

6. Process Representation Programs

* Develop and Verify Product. Perform the activities for the cycle to produce artifacts or advance
product maturity, and verify that the artifacts or advanced product maturity meet requirements,
as well as cycle objectives, and success criteria.

* Monitor and Review. Monitor and review the technical development activities as they are being
performed.

* Technical Product Review. Review product or part of product developed to ensure that cycle
objectives and success criteria were met.

Generally, the percentage of templates used to detail the events, throughputs, supports, and
constraints that apply to this quadrant of the cycle will exceed that of the other three quadrants com-

*bined. This is particularly true as the cycle advances from planning-intensive and prototyping activities
and evolves into production-intensive cycles. Depending on the size of the project being managed, it
can be advantageous on larger projects to have templates (and graphical models) dedicated to each
cycle of the ESP. Although initially more labor-intensive, if your organization tends to repeatedly de-
velop the same types of products or use the same types of processes, there is excellent opportunity to
reuse process architectures from prior applications of ESP. For new projects, the general events, re-
sources, throughputs, and constraints would typically have the same relationships as they had in prior proj-
ect instantiations. Much of the work in the new project can then be given to project- or product-specific
issues as opposed to process-specific.

Each of the third quadrant product development activities are graphically depicted in Figure 6-6.

6.3.4 THE FOURTH QUADRANT: MANAGE AND PLAN

During the fourth and last quadrant, a project takes stock of progress based on the outcome and lessons
learned during the cycle, compares actual results against the cycle objectives, re-evaluates and updates
Master Planning documents and decides what to do next.. Again, the potential contribution of a regular
and uniform program of measurement can be seen. The planning and management activities serve
to validate the work performed in the cycle and to adjust the project strategy based on the newly
available information. The measurable objectives, or the success criteria defined during the first quadrant
and monitored during the third quadrant, are critical to this set of activities in order to judge whether
the cycle is complete or needs to be iterated or if an alternative should be modified or abandoned.

The specific activities of the fourth quadrant are:

* Baseline Product. Place the product(s) or part of the product produced as a result of executing
the third quadrant development activities under configuration control.

* Review Progress. Evaluate cycle plan actuals versus estimates, success criteria, and lessons
learned, and update process drivers, including including project objectives, success criteria,
alternatives, constraints, risks, estimates, and other information.

* Develop/Update Engineering and Project Procedures. Update engineering and project procedures, if
necessary, based on lessons learned during the cycle.

* Update Master Plan. Update all planning documents, as necessary, to record actual progress,
reflect lessons learned, update estimates based on actual data, and update process drivers.

* Management Review and Commit to Proceed. Review updates to the Master Plan and commit to
proceed with next cycle.

6-17

6. Process Representation Programs

Master Plan Commit to Development Alternative (Second Quadrant)
(if beyond
) Plan and Schedute }/ e F12n
~1Development
~ 1 Alternatives
A .
Commit to Plan 'Work Assignments
| Repea
) = l Product/Part
Developand | Of Product
Verify
|_Repeat l I
Repeat Monitor and
Review Master Plan
(if 1st Cycle),
or Product/ Part
of Product -
o| Technical Product [&
Review —_—
Executed ™
Repeat | Cycle Plan

Figure 6-6. Develop Product Activities

It should be noted that with the ESP approach, detailed plans of later cycles may not be known or
defined at the time of project initiation. This is contrary to traditional approaches which assert that
the entire plan must be completely in place before any work can commence. The ESP approach in-
cludes the premise that the critical insights and information necessary for completing the project sim-
ply are not available at the time of project commencement. This is increasingly true as the duration
of a project becomes increasingly longer.

As a compromise to not having committed to future project details, a process model can be used to indicate
the general constraints that will exist on the later-cycle activities to be performed. For example, the project
model might require that each activity include a task for performing verification and validation. There-
fore, although within the ESP a project manager defers making decisions until sufficient information is
available to support those decisions, the process model can constrain that manager’s future decisions such
that the manager can not, in this example, choose to save time by eliminating the validation tasks.

Each of the fourth quadrant plan and manage activities are graphically depicted in Figure 6-7.

6.3.5 EVOLUTIONARY SPIRAL PROCESS AND DYNAMIC PROCESS IMPROVEMENT

Anintegral feature of the ESP model is the ability to engineer the best possible process for addressing
project needs. When following the ESP model, a project engineers its process dynamically by continu-
ously documenting, instantiating, enacting, and evolving its software development process definition
in an evolutionary fashion as shown in Figure 6-8. Regardless of the notation used to define your pro-
cess (ETVX, SADT, the templates, etc.), the ESP model specifically provides for an orderly and
controlled evolution of a baselined project process representation.

6-18

6. Process Representation Programs

Product/Part l Technical Product Review (Third Quadrant)

of Product Product/Part
" of Product
A—.. Baseline
~ Product
~ Cycle Plan Lessons Learned,

| Updated Process Drivers

-

~ Executed (l.\,cle Plan Review Progress

Develop/Update Engjnmﬁng and
—» Engineering and | Project Procedures
Project Procedures

L . Updated

Update Master | Master Plan

Plan
v Commit

Mana; t to next Cycle
Updated Master Plan Revif;'::g ——_;E
Commit to ——
Proceed Updated ™~

ter Plan
Repeat J Master
Figure 6-7. Manage and Plan Activities
1. Define Approach 2. Analyze and

Avert Risks

4. Manage and Plan 3. Develop Product

Figure 6-8. Evolutionary Project-Level Process Engineering

Evolutionary process engineering emphasizes the identification and continuous evaluation of key
project and cycle characteristics with the potential for driving the process in some significant way. In
the first cycle, a project’s process definition is documented by defining an overall process from scratch or
by tailoring an organizational process definition to the level of detail appropriate to the project’s current
understanding and its unique process drivers. In subsequent cycles, a project instantiates its project-level
process definition by defining it to an enactable level of detail, enacts or performs the cycle process,

6-19

6. Process Representation Programs

and evolves the process definition for the remainder of the project based on information gained,
lessons learned, progress to date, and early strategies and mitigation decisions.

A project can follow the ESP model to engineer its software development process regardless of the
level of organizational (CMM) process maturity. Although time and resource intensive, a project can
develop its project process definition without having an organizational process definition to use as a
foundation. The project-specific process model, activity specifications, and method descriptions engi-
neered as a result of following the ESP model can be abstracted, and used by organizations at anad hoc
or repeatable process maturity level as input to developing an organizational process definition.

Experience shows that developing comprehensive software process definitions can be very expensive
and time consuming, and it may be more desirable to develop general purpose process definitions to-
gether with techniques for reusing, tailoring, and enhancing them (Feiler and Humphrey 1992). Proj-
ects that are a part of an organization at the defined level of the CMM or above will likely spend less
time and effort engineering its process because of the availability of:

* A standard organizational process definition.

* Tools, methods, and techniques, and supporting technology transfer mechanisms.

* An advanced and/or automated organizational software engineering environment.

¢ Historical technical and management data.
A project at a higher level of process maturity will generally tailor and instantiate the available
organizational process definition and historical data into a project process definition as required by
unique process drivers. \
The ESP model encompasses process engineering actions at the project-level by:

¢ Documenting and baselining a project process definition in the first cycle.

» Instantiating the process for a cycle based on cycle process drivers.

» Evolving a project process definition as a project progresses and the process it enacted.

As organizations reach the highest levels of process maturity, it may be possible to optimize traditional
process engineering activities by developing specific tailoring and instantiation guidance.

Some type of process representation is crucial. As discussed in Section 2, the “best” representation
for you will be driven by a variety of factors that not only differ between organizations but which also
change, in time, within the same organization. Regardless of your choice, it is clear that some repre-
sentation beyond free-text based descriptions is critical for documenting, analyzing, and communicat-
ing about your process. In closing, the ESP approach is highly dynamic and makes change managemc:it
an explicit, accepted, and deliberate part of the process. Consequently, to depict ESP-based processes the
representation should likewise remain flexible, maintainable, and easily tailorable—all deliberate
characteristics of the template-based notation proposed by this guidebook.

6-20

6. Process Representation Programs

6.4 MANUAL PROCESS MANAGEMENT

Process descriptions, process models, programs of measurement, all can be used—and should be
used—to support the actual management of projects. Once you have defined a model and have instan-
tiated a project plan from the model, you can facilitate process management by using a variety of tech-
niques or tools that monitor the actual evolution of the project. Sections 6.4.1 and 6.4.2 are two
examples of ways you can use process representations to support process management. The first ex-
ample discusses the value of using process checklists. The second example assumes at least some level
of automation is available.

6.4.1 ProcEss CHECKLISTS

At an abstract level, the purpose of using a checklist is to allow a person to confirm compliance with
a set of rules. These rules may require that certain items be available (such as in an inventory-type
checklist) or that certain events or steps occur. A process checklist provides a simple method for guid-
ing a person through a series of events; for verifying that certain events have occurred; and for verify-
ing that throughputs, supports, etc., are available, generated, or participating as designed in the
overall process.

The fields on the templates are used to develop first-draft process checklists. Successive versions of
the checklists can add information not reflected on the templates. For example, an event template rep-
resenting the final coding activity (before requesting an inspection) might state in its “exit criteria”
field that the software code artifact (defined elsewhere using a product template) must be in a state
of “ready_for_inspection.”

For checklists, these state-sensitive requirements need to be changed to a list of descriptive statements
elaborating on the criteria characteristic of that state. Continuing with this example, “ready_for_in-
spection” may mean that (1) the code compiles cleanly, (2) the program listing has both page and line
numbers, (3) each module includes a copyright statement, (4) each module has a descriptive prologue,
etc. Providing programmers with this type of checklist not only helps them to stay in compliance with
the process, but it also provides a very easy way to keep them informed of exactly what the process is.

Additionally, checklists can include fields for a person to place their initials and the date and time,
signifying that a given item on the checklist has been completed or confirmed. This provides an easy
method for management to collect time-based information such as total hours spent within specific
activities, total hours interval between different activities, etc. From this perspective, checklists can
be a powerful tool as a medium for binding process representations and metrics.

6.4.2 ELECTRONIC MAIL-BASED PROCESS

The advantages to managing and handling checklists through electronic mail are considerable. One
of the primary advantages is the ability to automatically notify individuals involved in a process that
their input is needed on various checklists. In a process of any size, having checklists to monitor the
entry and exit criteria of every event within that process quickly leads to an avalanche of checklists in
circulation. The moment that the collected data becomes inconsistent, skipped, or randomly esti-
mated, the value of using the checklists drops abruptly. These scale-up considerations can largely be
mitigated through the use of electronic mail-based checklist management.

6-21

6. Process Representation Programs

With the exception of inter-activity defect tracking, you should also note that comparative analysis of
the fundamental relationships between the checklist line items is a relatively trivial automation effort.
If a reasonably structured format is followed, it is relatively simple to write a parser that interprets
the checklists, extract criteria compliance, and time-stamp values (as discussed above) and loads those
values into a process metric database. Reports within the database environment are then developed
that perform basic comparative analysis, perhaps provide a variety of summarized reports to manage-
ment, and possibly recommend w1ys in which process quality can be improved and productivity increased.

6.5 AUTOMATED PROCESS MANAGEMENT VIA INTEGRATED ENVIRONMENTS

Although electronic mail is probably the most widely used tool for automated support of teams and
groups of interacting people, considerable research continues to be done in advancing the state of the
art for supporting teams of people. There is no doubt that a team of individuals working in a coopera-
tive, cohesive, and coordinated manner can accomplish greater objectives, more efficiently, and more
safely than people working individually and in isolation. The same is equally true of the processes and
tools such a team uses.

The Information Engineering industry has amassed a vast collection of separate, stand-alone tools
and techniques. Various research efforts are investigating alternatives for achieving synergistic advan-
tages through integrating these into cohesive environments. More recently, considerable research has
gone into processes in general: process maturity, process assets (i.e., reusable subprocesses), process
asset libraries, etc. Virtually any effort to improve process coordination and management can be
greatly supported by automating aspects of process management and enacting them within an inte-
grated environment. Sometimes referred to as Integrated Process Support Environments (IPSEs),
these environments strive to integrate not just the tools, but also the methods and techniques by which
the combination of tools can be used. The resulting environments provide an ideal foundation from
which to pursue EBPM.

One of the more traditional approaches to constructing environments supporting specific processes
is to build a meta-service under which a variety of existing tools can be run. Ideally, such a layer also
handles nominal file and data conversion efforts so that underlying tools can pass data through and
between each other with minimum guidance from the user.

One example of this type of approach is the Software Life Cycle Support Environment (SLCSE): a
VAX/VMS-based software development environment with a common user interface behind which “an
environment framework that can create a variety of environments, each tailored to the needs of a par-
ticular software development project” (Strelich 1988). Regrettably, meta-layer tool approaches often
encounter incompatible underlying data formats in the tools they attempt to integrate.

To partially address this problem, there are several significant ongoing efforts toward standardization.
Aside from the relatively widespread practice of companies attempting to define and adhere to their
own in-house standards, there have been fairly ambitious efforts toward developing industry-wide, na-
tional, and international standards. A major effort undertaken by the European community is the Pub-
lic Common Tool Interface or PCTE. Although somewhat less true today, the basic persistent problem
is that, “Most software engineering tools that are presently available result from individual efforts and
tend to constitute a collection of vaguely related products, each filling a particular function, but with-
out much consideration for the software development process as a whole” (Campbell 1986). Note the ref-
erence not just to the tools of the software industry, but to the process that, ideally, must accompany these
tools. It is evident that robust integrations are achieved by combining both components and processes.

6-22

6. Process Representation Programs

To date, the preferred approach to achieving cost-effective IPSEs has been to focus on abstract machine
implementations, and to seeck methods and techniques that provide users an environment supporting
sometimes radically diverse roles. Additionally, this needs to be achieved under a reasonably consis-
tent interface, and must allow consistent enforcement of the engineering process. However, support
from an environment can consist of distinctly different types. Many environments are passive IPSEs
and, typically, exhibit only the two most basic types of integration (data and user-interface). These
systems are passive in the sense that they support rather than participate in the development process
(Rodden and Sommerville 1988). Active support environments differ from passive environments in
that they layer process and methodology integration onto user-interface and data integration.

The integration of process into IPSEs is well demonstrated by ISTAR. ISTAR uses a “contractual”
approach for managing various work activities. Specifically, there is a hierarchical decomposition of
work units into progressively smaller units until sufficient detail is achieved for management pur-
poses. Effectively, each task then becomes an individual contract; subtasks are translated into sub-
contracts and so on down the hierarchy. In all cases, the contracts specify in a precise and sufficiently
detailed manner the task to be performed and the deliverables required (Stenning 1986).

One of the most crucial characteristics exhibited by any IPSE is its ability to evelve and adapt to the
changing requirements of both its environment and the users it supports. Particular emphasis has been
given to this issue by the Arcadia project. As described in Taylor et al. (1988), “The Arcadia research
project is investigating the construction of software environments that are tightly integrated, yet flex-
ible and extensible enough to support experimentation with alternative software processes and tools.”

This is a particularly challenging goal in that integrating a process into an environment is in many ways
orthogonal from simply integrating another tool. Typically, a tool need only concern itself with one
type of data format. A process, however, may attempt to usher a component through several different
stages in the evolution of that artifact; stages which may, at times, embody considerably different rep-
resentations of the component. Furthermore, tools rarely need to be state sensitive. Conversely, a pro-
cess must not only be state sensitive but, practically speaking, it is essentially state driven. Even a
comparatively simple process layered onto an IPSE canyield extensive collections of artifacts evolving
through the state transitions managed by the IPSE.

In addition to process support, another characteristic of some EBPM implementations is actual process
enforcement. An example of this approach is Darwin. An interesting characteristic of Darwin is that
the law which governs the operations on basic objects within the system is also used to govern meta-
messages, and thereby simultaneously constrain the evolution of the system (Minsky and Rozenshtein
1988). Not only are object services and access enforced, but the process itself (and the methods by
which that process may change and evolve) is also enforced. Arguably, it could be stated that Darwin
is one of the first IPSEs to acknowledge that management of the process itself is of higher priority than
the individual functionality expressed by underlying tools.

6.6 SUMMARY

The material in this section has provided discussion into a variety of areas related to the establishment
and support of a process representation program. Discussion has ranged from a manually managed
process to integrated, automated process support; from resources required to start a program to an
example of a new process management paradigm; from simple support tools such as checklists to com-
plex programs involving detailed measurements and process related metrics. However, throughout

6. Process Representation Programs

this section, and repeatedly throughout the guidebook, one theme often serves as the hub around
which other discussions evolve: process maturity.

As you may recall, the highest level of process maturity is Level 5, the optimizing level. This level is
characterized by improvement insights that directly translate into process changes. These changes in-
clude efforts toward defect prevention, improved development environments, and an overall trend
toward automating the software process (as discussed in Section 6.5).

From this perspective, planning and managing process improvement translates to progressive
advancement to higher stages of process maturity. Well defined and documented process descriptions
and models are one means of beginning to work at the third level of process maturity (the “defined”
process level).

Although metrics are also crucial to higher levels of process maturity, they can contribute to process
improvement from any level. From the perspective of process definition and modeling, the Consortium
highly recommends that after developing one or more (possibly template-based) process models, a
set of metrics should be defined that allow you to gain insight into the processes instantiated from the
model. By collecting data relevant to these metrics, comparative project histories will begin to
develop. These histories can then be used as the foundation for process optimization.

In Section 4 there is a discussion on how template-based process models can support a program of
process improvement. The method involved performing static analysis of the characteristics of the
template-based description and deriving an improved process as a result of insights gained from the
static architecture. Metrics allow for collecting information on the dynamic or behavioral characteris-
tics of processes, and allows for insights to be gained into the temporal aspects of a process model.

Whether from static or dynamic analytical techniques, process improvement can be facilitated by
proposing and constructing new or alternative process models and by analyzing those models for desir-
able characteristics. This can be a cyclic process repeatedly involving the use of static analytical
techniques to gain insights into potential process improvements.

At some point, however, it becomes necessary to evaluate the proposed approach by deriving an
instantiation of a pilot or shadow project from the model and then monitoring the evolution or enact-
ment of that process. As discussed above, it is highly recommended—almost imperative—that some
set of metrics is employed to measure the process. Actual values must be regularly compared with pre-
dicted values. In support of this effort, it may be useful to construct a series of checklists (as discussed
above) that simplify and otherwise facilitate the collection of metric-related data. (If an automated,
integrated process support environment exists, metric data collection can be almost entirely automatic.)

These efforts will result in a new set of history data being collected: data that reflects the characteristics
of the experimental or new process. If the results are generally positive, other projects can be instan-
tiated from the model yielding increased benefit to the organization. The additional projects will pro-
vide still further data which in turn can be used to guide the exploration of further improvements to
the process models. Ideally, the organization settles into a regular cycle of improved models, im-
proved organizational processes, improved pilot projects, improved actual projects, improved process
insights based on metrics, which completes the cycle by contributing once again to improved process
models and descriptions.

6-24

7. SUMMARY

As you can see in Figure 7-1, this section can be reached by a variety of routes. Any of Sections 2, 3,
5, and 7 serve as an immediate predecessor to this section. Depending on the number of sections read
_prior to reading this section, the material contained in this summary will seem more or less familiar.

4 ©)
6 @) (\
Introduction Templates —’I T‘;‘J“SI;“:‘C \ oM Program of
L PD&M |
v 1) \
@)) \
Overview and Alternate | \
Foundation Representations] \

Figure 7-1. Guidebook Organization View 7

7.1 REVIEW

One of the chief contributions of this guidebook is the set of templates and graphical conventions
proposed in Section 3. These templates and graphical techniques are completely adequate for use as
is, but they are also designed to be easily tailored to site-specific objectives. Event templates (Manage-
rial and Production), Throughput templates (Products and Research), Support templates (Roles and
Resources), and the Internal and External Constraint templates all allow virtually any characteristic
of a process to be defined and modeled.

This guidebook also presented several alternative notations (such as SADT and Petri nets) and
showed how the templates can be used as a direct source of information for constructing process repre-
sentations based on these alternative notations, and how the templates can be used to extend or
augment the information already captured using a different representation.

Section 6 provided discussion, insights, and recommendations on how an organization can proceed
with establishing a process representation program. This section also presented techniques for using
process representations as a means to support manual process management or automated process
management via integrated environments. Metrics were discussed, especially from the perspective of
how metrics (and process representations, templates, and checklists) can be part of a larger program
that contributes toward overall process improvement.

71

7. Summary

In the appendices you will find a variety of process representation examples. This includes an extensive
example which provides step-by-step guidance in developing a template-based representation of a hy-
pothetical “SWAT” formal inspection process. This example not only discusses an approach to per-
forming process analysis and representation, it also presents an example and explanation of
graphically rendering process information by constructing a Petri-net based model (note that this is
distinctly different from using the graphical conventions described in Section 3).

Throughout the guidebook, the principle focus has been on templates and template-based graphical
techniques. The primary reason for this orientation is that the advantages to using the templates are
considerable. The templates are easy to learn and very easy to tailor. Furthermore, they can be easily
and efficiently used to capture and maintain representations of even volatile or unusual processes, or
to derive and analyze new models of proposed processes. This is especially true if initial renditions
are done partially or entirely using graphical depictions.

It cannot be overstressed that this entire area of process analysis, process design, process representation,
and process optimization is best approached cyclically: working from smaller to larger models, from
tightly defined to broadly defined domains, from simple constructions of process architectures to
more complex constructions and architectures, from generic templates to explicitly tailored or
domain-sensitive templates, etc.

Although alternative notations can be advantageously used (especially if residual in-house experience
is available), it is worth emphasizing that the templates are capable of capturing more information
than is typically gathered using any one alternative notations. The templates can also be used (espe-
cially if the suggested or tailored, default state sets are employed) to bind such information more
formally, and in more ways, than is often possible using alternative notations.

An overall goal of this guidebook has been to present a means whereby a company or organization
can simply, efficiently, and cost effectively use a variety of process representation tools and techniques
to support improved process analysis, design, and optimization. From this foundation, an organization
is better positioned to readily answer questions such as:

* Where are the new opportunities for improving process quality?

¢ How can process risk be further reduced?

* How can process efficiency be increased?

* How can resources be used more efficiently and effectively?

* How can product quality be increased as a function of a higher quality process?

Finding answers to all these questions can be facilitated by analyzing process representations, by
collecting and investigating process-related metrics and data, and by developing progressively more
accurate depictions of the current and future processes that characterize the organization. While it
is true that process definition and modeling is just one step to an overall program of continuous pro-
cess optimization, it is a significant step and, as proposed within this guidebook, relatively simple,
low-risk, and therefore potentially quite cost-effective.

7.2 FUTURE WORK

At the time of publication, there are three major new additions planned for the next release of the
Process Definition and Modeling Guidebook. These are:

7. Summary

* Addition of a new meta-class template (Measurement) and at least two supporting class
templates (Quality Measures and Productivity Measures).

* Extension of the graphical notation to highlight dynamic process characteristics.

e Development and elaboration of a mathematical representation and supporting mathematical
techniques for increased formality in process model construction, analysis, and verification.

Other material already in the guidebook, but planned for expansion, are the areas of metrics and the
use of process representations to facilitate the construction of project management plans and to facili-
tate ongoing project monitoring and control. Potentially scheduled for the next release is expanded
material on the use of process representations to support integrated, EBPM.

7.3

7. Summary

This page intentionally left blank.

7-4

3. Process Definition Templates

Policy &
Procedure
N Process - New Policy
\ Improve Proposals
Hold Summarize
Meeting Recomm
Il I\ I
1:01 . v 1IN |
Solicit |
New
Recomm. J
P
P
P
e
v
Recomm
Database Schedule
Mgmt.
Present.
Hold
Mgmt.
— e Present.
Mgmt.
Schedule.
Figure 3-40. SWAT-D3

Inspection

Minutes

When
Needed,

Schedule
Meeting

New Policy
Proposals

347

APPENDIX A. EXAMPLE TEMPLATE USAGE

This appendix describes a hypothetical process. It provides a detailed example of how you can analyze
that process and how you construct a template-based process model.

The example presents a hypothetical business, Company-X, with a process analyst who is contracted
to work on site and construct a process model.

A.1 DEFINITION AND MODELING APPROACH

Assume the following. A process analyst has been hired as a process consultant to define and model
a process for Company-X. Company-X is interested in achieving Level-3 in the Software Engineering
Institute’s (SEI) assessment ranking. As a step toward that goal, they have introduced an “Inspection
SWAT Team” which they intend to use to rapidly expand and improve their application of Formal Soft-
ware Inspections. Company-X has contracted the analyst to build a template-based representation of
- their Inspection SWAT Team Process (ISTP) and then develop a Petri net representation from the
templates.

The approach the analyst plans to take involves the following steps:

1. Perform initial data collection

N

Construct high level event templates

Construct external constraint templates

Construct role templates

Construct product templates

Bind external/role/product templates to event templates
Construct low level event templates

Extend existing templates (external, roles, products)

AR A N T

Construct resource templates
10. Construct research templates
11. Construct internal constraint templates

12. Bind all throughput/support/constraint templates to event templates

A-l

Appendix A. Example Template Usage

13. Evaluate template set and improve clarity/sirnplicity

14. Derive Petri net representation of process dynamics

A.2 FORMAL INSPECTION PROCESS EXAMPLE
Beginning with the first step, the process analyst ascertains the following information.

Step 1. Perform Initial Data Collection. The analyst performs this step by examining company policies
and procedures, and by interviewing key personnel. During this effort the analyst keeps notes on
general process-related information regarding the Company’s ISTP.

After the analyst summarizes his notes, he finds the following general information:

* There are seven divisions that can request the services of the SWAT team; however, the four
divisions that develop real-time Ada systems have priority.

* The ISTP occurs in six stages:
— Planning
— Overview
— Preparation
— Inspection meeting
— Rework
- Follow-up
* Two process improvement events also occur:
— Causal analysis
— Inspection process improvement analysis
* There are a variety of roles that support the inspection process:
— Super moderator
— Moderator
— Author
— Key inspector
— Inspector
— Scribe

- Reader

A2

Appendix A. Example Template Usage

Although there are plans to expand the program, the ISTP is currently used to inspect Ada
packages and such technical documentation as:

-~ End-user guides
— System administration guides
— Installation guides

Inspect Ada packages against the Software Productivity Consortium’s Ada Quality and Style:
Guidelines for Professional Programmers. Inspect technical documentation against Company-X's
Guidelines for Technical Documents.

Due to the number and frequency of inspections, a dedicated meeting room has been set aside
exclusively for inspections.

There is a pool of approximately 20 employees to serve as SWAT members. The super moderator
has overall responsibility for the entire program, and five others are authorized to be modera-
tors. Those five plus another four are authorized as key inspectors and readers. All can serve,
if necessary, as inspectors and scribes. Since all but the super moderator have principle
engineering responsibilities, anyone may occasionally serve as the role of author.

The company is compiling a series of checklists. These checklists specify entry and exit conditions
for various inspection related events.

A.3 TEMPLATE USAGE

The remaining steps of the analyst’s original plan involve using the default set of templates (as
presented in Section 3).

Step 2. Construct High Level Event Templates. Using the above information (augmented by notes, phone
calls, or conversations with participants), the analyst makes an initial indented list.

Inspection SWAT Team Process

Inspection Activity
Planning
Overview
Preparation
Inspection Meeting
Follow-up
Causal Analysis Activity
Inspection Process Improvement Activity

Next, using the indented list as a general guideline, the analyst constructs high level event templates.
He then details the internal processing and basic event relationships (entry and exit criteria). (See the
following pages.)

For reference purposes, the analyst also makes note of the following event-specific states
(recommended as the default set of states in the guidebook).

A3

Appendix A. Example Template Usage

Default Set of Process States:

Pre-Enabled
Enabled
In-Progress
Disabled
Suspended
Cancelled
Completed

A4

Appendix A. Example Template Usage

Level # Version # and Date
Management Template
1 Template Type 0la 070493
Name Unique Identifier
SWAT _Process SWAT
Purpose
Inspection SWAT Team Process
Comments
Additional States :
Entry Criteria Internal Processing Exit Criteria
VP_Request In Parallel Do... VP_Request
SWAT state is In_Progress
Perform SWAT EA_INSPECT
Perform SWAT ET _CAUSAL
Perform SWAT_EA PROC-IMP
Until VP Requests Cessation
Throughputs | Supports Internal External

Parent Event(s)

Child Events

SWAT_EA_INSPECT
SWAT_ET_CAUSAL
SWAT_EA_PROC-IMP

Constraints Constraints

Revision History

01a_070493 — Initial Version; 1st high level pass

A-S

Appendix A. Example Template Usage

Level # Version # and Date
Management Template
2 Tomplate Type 01la_070493
Name Unique Identifier
Inspection SWAT _EA_INSP
Purpose
This is the overall inspection activity and contains, as shown below, several stages.
Comments
Additional States '
Entry Criteria Internal Processing Exit Criteria
SWAT_EA_INSP state is In_Progress
WAT:: 1) Perform SWAT_ET_INSP_PLAN .
S AT: In_PrOgreSS Perform SWAT ET INSP OVER SWAT_EA_INSP..Complete
Perform SWAT ET INSP PREP
Perform SWAT ET _ INSP "1-MTG
Perform SWAT ET_INSP REWORK
Perform SWAT_ET_INSP__FOLLOW
If Reinspection Needed
Go To (1) _
SWAT_EA_INSP state is.Complete
Throughputs | Supports Internal External
Constraints Constraints
Parent Event(s)
SWAT
Child Events
SWAT_ET INSP_PLAN
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT _ "ET_ INSP I-MTG
SWAT ET INSP_ “REWORK
SWAT ET INSP FOLLOW

Revision History

01a_070493 — Initial Version; 1st high level pass

A-6

Appendix A. Example Template Usage

Level #) Version # and Date
3 Production Template 0la 070493
Template Type a’_ 7
Name Unique Identifier
Planning SWAT_ET_INSP_PLAN
Purpose
This represents the planning stage of the inspection activity.
Comments
Entry Criteria Internal Processing Exit Criteria

SWAT EA_INSP:In_Progress

Products Supports

Research

SWAT_ET_INSP_PLAN state is
In_Progress

Evaluate the Item to be Inspected

Estimate the expected inspection rate

Construct a schedule

Assign personnel to the schedule

Confirm personnel availability

Adjust/Redo schedule as necessary

SWAT_ET_INSP_PLAN'state is
Complete

SWAT_ET_INSP_PLAN::
Complete

Parent Event(s)
SWAT_EA_INSP

Child Events

Constraints

Revision History

0la_070493 — Initial Version; 1st high level pass

A7

Appendix A. Example Template Usage

SWAT_EA_INSP:In_Progress
and
SWAT_EA_INSP_PLAN:
Complete

Products

Research

Supports

SWAT_ET _INSP_OVER state is
In_Progress

Introduce Objective

Introduce Members

Have Reader present the item to
be inspected

Review preparation time and schedule

Dismiss meeting .

SWAT_ET_INSP_OVER state is
Complete

Level # . . Version # and Date
3 Production Template 0la 070493
Template Type a_
Name Unique Identifier
Overview SWAT _ET _INSP_OVER
Purpose
This represents the overview stage of the inspection activity.
Comments
Entry Criteria Internal Processing Exit Criteria

SWAT_ET_INSP_OVER::
Complete

Parent Event(s)
SWAT_EA_INSP

Child Events

Constraints

Revision History

01a_070493 — Initial Version; 1st high level pass

A8

Appendix A. Example Template Usage

Level # Prod . T I Version # and Date
roduction lemplate
3 Template Type 01 a__070493
Name Unique Identifier
Preparation SWAT_ET INSP_PREP
Purpose

This represents the preparation stage of the inspection activity.

Comments

The preparation stage is characterized by all inspectors (both key and otherwise) reviewing the
material for defects and completing trivial error logs and preparation error logs (both of which
are brought to the actual inspection meeting).

Entry Criteria

SWAT_EA_INSP::In_Progress
and
SWAT_EA_INSP_OVER::
Complete

Products

Research

Supports

Internal Processing
SWAT_ET_INSP_PRERP state is
In_Progress :
Disperse material to be inspected and
associated support forms
Each Inspector Does:
Review of Relevant Standards
Personal Inspection of Item
Completes Trivial Error Log
Completes Preparation Log
Completes Preparation_Exit
Form (Checklist)
END [Each Inspector Dboes]
Moderator Collects/Verifies Checklists
Moderator distributes Inspection
Invitation letter
SWAT_ET_INSP_PREP state is
Complete

Exit Criteria

SWAT_ET_INSP_PREP:
Complete

Parent Event(s)
SWAT_EA _INSP

Child Events

Constraints

Revision History

01a_070493 — Initial Version; 1st high level pass

A9

Appendix A. Example Template Usage

Level # . Version # and Date
3 Production Template 0la 07049
Template Type a__ 7 3
Name Unique Identifier
Inspection_Meeting SWAT _ET INSP_I-MTG
Purpose
This represents the actual inspection (by the group) of the item to be inspected.
Comments '
Entry Criteria Internal Processing Exit Criteria

SWAT_EA_INSP::In_Progress
and
SWAT_EA_INSP_PREP::
Complete

Products Supports

SWAT_ET_INSP_I-MTG state is
In_Progress

Take Attendance

When (Everyone has arrived OR its
past start time and key
inspectors have arrived)
Review Purpose
Collect Trivial Error Logs
Perform Product Inspection
Review Findings
Determine if reinspection req’d

END [When]

Complete/Distribute Inspection exit memo

SWAT_ET_INSP_I-MTG state is
Complete

SWAT _ET_INSP_I-MTG::
Complete

Parent Event(s)
SWAT_EA_INSP

Research

Child Events

Constraints

Revision History

01a_070493 — Initial Version; 1st high level pass

A-10

Appendix A. Example Template Usage

Level # . Version # and Date
3 Production Template 0la 070493
Template Type a_
Name Unique Identifier
Rework SWAT_ET_INSP_REWORK
Purpose
Perform the necessary changes and updates to remove defects detected during inspection.
Comments '
Entry Criteria Internal Processing Exit Criteria
SWAT_ET_INSP_REWORK state is
In_Progress
SWAT_EA_INSP::In_Progress| Each Producer does: SWAT _ET_INSP_REWORK::
and Evaluates pertinent defects ~ Complete
SWAT EA INSP I-MTG:: Alters product only to correct
~ Complete the defect
Notes location and scope of
changes
If Req’d: makes before and after
listings .
until all defects addressed -
Products Supports Moderator notified that Constraints
all changes are complete
SWAT_ET_INSP_REWORK state is
Complete
Parent Event(s)
SWAT _EA_INSP
Child Events
Research
Revision History

01a_070493 — Initial Version; 1st high level pass

Appendix A. Example Template Usage

Level # P d) T Version # and Date
roduction Template
3 Tomplate Type 01a_070493
Name Unique Identifier
Follow-up SWAT_ET_INSP_FOLLOW
Purpose

Verify that the authors/producers have addressed all defects detected by inspectors.

Comments
Occasionally, the nature of the changes to the inspected item are such t

hat the moderator

may elect to call a reinspection (even though originally it might not have seemed necessary).
If no reinspection is necessary, this is the last (regular) stage of the inspection process.

Entry Criteria

SWAT_EA_INSP::In_Progress

and

SWAT_EA_INSP_I-MTG::
Complete

Products

Research

Supports

Internal Processing

SWAT_ET_INSP_I-FOLLOW state is
In_Progress

Meet with the author(s)

Discuss nature and scope of changes

Evaluate each change

Confirm only authorized changes made

Determine whether a reinspection needs
to be conducted

Moderator completes the follow-up
checklist

SWAT_ET_INSP_FOLLOW state is
Complcte

Exit Criteria

SWAT_ET_INSP_FOLLOW:
Complete

Constraints

Parent Event(s)
SWAT_EA_INSP

Child Events

Revision History

01a_070493 — Initial Version; 1st high level pass

A-12

Appendix A. Example Template Usage

Level # . Version # and Date
5 Production Template Ola 070493
Template Type a_
Name Unique Identifier
Causal Analysis SWAT_ET _INSP_CAUSAL
Purpuse
Attempt to identify common problems and suggest process changes to originate their cause.
Comments
Entry Criteria Internal Processing Exit Criteria

SWAT::In_Progress

Products

Research

Supports

SWAT_ET_CAUSAL state is
In_Progress

Take attendance

Review outstanding issues from prior
causal analysis meetings

Report results of trend analysis efforts

Solicit perceived problem areas from
attendees

Prioritize problem areas

Discuss/determine process changes to
reduce/remove ropt causes

At end of meeting; review findings

Dismiss meeting

Compile Causal Analysis Report

SWAT_ET_CAUSAL state is
Complete

SWAT _ET_CAUSAL::
Complete

Parent Event(s)

SWAT

Child Events

Constraints

Revision History

01a_070493 — Initial Version; 1st high level pass

A-13

Appendix A. Example Template Usage

Level # . Version # and Date
Production Template
2 Template Type O 1 a_070493

Name Unique Identifier
Inspection_Process_Improvement SWAT_ET_PROC-IMP
Purpose

Improve the way inspections are actually conducted.

Comments

Inspection process improvement efforts are not constrained to any particular inspection subprocess.
Inspections, causal analysis, and even this process are all potentially subject to process improvement
efforts.

Entry Criteria Internal Processing Exit Criteria

SWAT_ET_PROC-IMP state is
In_Progress

Take attendance

SWAT::In_Progress Review outstanding issues from prior SWAT_ET_PROC-IMP::
process improvement meetings Complete

Solicit suggestions from attendees

Organize suggestions by domain

Evaluate cost/benefit

Prioritize by estimated cost/benefit

Investigate alternatives

Compile final recommendations

At end of meeting; review findings

Products Supports Dismiss meeting Constraints

Compile Inspection Process Improvement
Report
SWAT_ET_PROC-IMP state is
Complete
Parent Event(s)

SWAT
Child Events

Research

Revision History

01a_070493 — Initial Version; 1st high level pass

Appendix A. Example Template Usage

Step 3. Construct External Constraint Templates. The process analyst reviews his work to date and
decides it is accurate enough to procced with establishing and binding a few other template classes.
As indicated in the initial work plan, the first nonevent class of templates tc be included are the
external constraint.

Using his notes, the analyst builds the following simple indented list:

Vice-President; Quality Assurance

Policies, Procedures, and Guidelines
SPC Ada Quality and Style Guide
Company-X Technical Document Guidelines

The analyst also builds a list of the default set of states recommended for this class.

Default Set of External Constraint States:
Compliance_Unknown <EXPORT>
Compliance_Under_Evaluation
Compliance_Achieved
Compliance_Failure
Compliance_Waived

Finally, the analyst creates the following four instances (one for each line on the indented list) of
external constraints.

A-15

Appendix A. Example Template Usage

Level # E l C . T I Version # and Date
xternal Constraint lemplate
1 i e 0la_070593
Name Unique Identifier
VP Quality Assurance SWAT CE_VP
Purpose

Monitor and determine whether the SWAT inspection effort should continue or cease.

Comments

The VP of Quality Assurance has overall control and responsibility for the SWAT Inspection process.

Special Form Of
(parent)

[None]

Additional States/Description
Require_Cessation

This state is used to represent the VP declaring the SWAT program

be ceased.
Approve_Cessation

This state represents VP approval of a super moderator request to
cease the SWAT inspection process.

General Form Of
(list children)

[None]

Constrained Events

SWAT

Constrained Throughputs

[None]

Constrained Supports

[None]

Revision History

01a_070593 — Initial Version; 1st high level pass

A-16

Appendix A. Example Template Usage

Level # . Version # and Date
1 External Constraint Template 0la 070593
Template Type a_
Name Unique Identifier
Policies, Procedures, and Guidelines SWAT_CE_PPG
Purpose
Provide written reference standards applicable to conducting the SWAT inspection process.
Comments
Under this group of constraints are all the applicable documented standards necessary for performing
the SWAT inspection process.
Special Form Of Additional States/Description
(parent) Require_Cessation
[None] This state is used to rep- :sent the VP declaring the SWAT program
be ceased.
Approve_Cessation
This state represents VP approval of a super moderator request to
cease the SWAT inspection process.
General Form Of Constrained Events Constrained Throughputs
(list children)
SWAT_CE_PPG SWAT [All products subject to
“ADA or participating in the
SWAT formal inspection
SWAT_CE_PPG_ process.]
X-TECHDOC
Constrained Supports

[Any roles or resources
which are governed by one
or more sections in any
applicable documentation.]

Revision History

01a_070593 — Initial Version; 1st high level pass

A17

Appendix A. Example Template Usage

Level # . Version # and Date
) External Constraint Template 0la 070593
Template Type a_ N
Name Unique Identifier
SPC Ada Quality and Style Guide SWAT_CE_PPG_ADA
Purpose
Provide Ada-specific reference standards applicable to Ada throughputs/products.
Comments
Special Form Of Additiona! States/Description
(parent)
SWAT_CE_PPG [None]
General Form Of Constrained Events Constrained Throughputs
(list children)
[None] SWAT [All Ada-oriented software

products subject to or
participating in the SWAT
formal inspection process.]

Constrained Supports

[None]

Revision History

01a_070593 — Initial Version; 1st high level pass

A-18

Appendix A. Example Template Usage

Level # E 1 C . T l Version # and Date
xternal Constraint lemplate
2 S P 01a_070593
emplate Type -—
Name Unique Identifier

Company-X Technical Documentation Guidelines

SWAT_CE_PPG_X-TECHDOC

Purpose
Provide employees with guidelines, examples, and forms to support technical document development.

Comments
Special Form Of Additional States/Description
(parent)

SWAT_CE_PPG [None]
General Form Of Constrained Events Constrained Throughputs
(list children)

[None) SWAT [All technical documentation
subject to or participating in
the SWAT formal inspection
process.]

Constrained Supports
[None]
Revision History

01a_070593 — Initial Version; 1st high level pass

Appendix A. Example Template Usage

Step 4. Construct Role Templates. The process analyst references his notes and some existing
documentation collected. He constructs the following indented list for representing roles:

Super Moderator
Inspection SWAT Team
Moderator
Producer
Inspector
Key Inspector
Regular Inspector
Scribe
Reader

The analyst then builds a list of the default set of role states (to be referenced when considering the
addition of new role states):

Available_Exclusively
Available_Shared
Not_Available
Disabled

Suspended

A-20

Appendix A. Example Template Usage

Level # R 1 T l Version # and Date
ole lemplate
1 P 01a_070593
Template Type -
Name Unique Identifier
Super Moderator SWAT SP_S~-MOD
Purpose

Provides overall management of, and expert participation in, the SWAT Inspection Process.

Comments

Generally, the super moderator has overall responsibility to develop, manage, and steadily
expand the SWAT formal inspection process. This person also provides regular status reports
to management and incorporates their recommendations. May participate in any SWAT role.

Additional States/Descriptions Associated Authority

(via Internal Constraints)
and Applicable Events
[None]

[The super moderator
can exercise any of the
authority granted by the

internal constraints
Part Of Supported Events except those which are
specifically mapped to
[None] upper management.]

[TBD]

Composed Of

[None]

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A21

Appendix A. Example Template Usage

Level # R 1 T l Version # and Date
ole Iemplate
1 P 01a_070593
Template Type -
Name Unique Identifier
Inspection Team SWAT_SP_TEAM
Purpose

Participates, as a group, in various events of the SWAT inspection process.

Comments

As indicated below, the team has certain minimum and maximum constraints on the number of
people participating in the various roles of a specific team.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events
[None]
[TBD]
Part Of Supported Events
[None]
[TBD]
Composed Of

SWAT_SP_TEAM
MOD (1)
READ (1)
PROD (1.N)
INSP (4..6)
KEY (2..4)
REG (0..4)
SCRIBE (1)

External Constraints

[Note: only a key inspector can
serve in the role of a reader.] SWAT CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A-22

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
2 P 01a_070593
Template Type -
Name Unique Identifier
Moderator SWAT_SP_TEAM_MOD
Purpose

Manages the inspection of an artifact throughout the stages of the SWAT inspection.

Comments

The moderator works closely and coordinates with the super moderator. Moderators are key inspectors
that have received additional training to quality them for moderating inspections. Moderators are
chosen (by the super moderator) on an inspection by inspection basis.

Additional States/Descriptions

[None]

Associated Authority
(via Internal Constraints)
and Applicable Events

(TBD]

Part Of

SWAT_SP_TEAM

Composed Of

[None]

Supported Events

[TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A-23

Appendix A. Example Template Usage

Level # R 1 T l t Version # and Date
olec 1empilate
2 P 01a_070593
Template Type —
Name Unique Identifier
Reader SWAT _SP_TEAM_READ
Purpose

Presents the artifact to be inspected both during the overview and during the inspection meeting.

Comments

For any item being inspected, the reader/presenter must also have been one of the key inspectors.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events

[None]
[TBD]

Part Of Supported Events

SWAT SP_TEAM
SWAT_ET_INSP_OVER
SWAT_ET_INSP_I-MTG
Composed Of
[None]
External Constraints
SWAT CE_PPG
Revision History

01a_070593 — Initial Version; 1st high level pass

A-24

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
2 P 01a_070593
Template Type -
Name Unique Identifier
Producer SWAT_SP_TEAM_PROD
Purpose

Generally assists the inspector and makes the necessary defect corrections.

Comments

If there are more than three producers for a given artifact, then one or two “key” producers should be
selected to represent the artifact, and then coordinate, perform, or otherwise take responsibility for
assuring that defects are properly removed from the inspected item.

Additional States/Descriptions

[None]

Associated Authority
(via Internal Constraints)
and Applicable Events

[TBD)

Part Of

SWAT _SP_TEAM

Composed Of

[None]

Supported Events

[TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A-25

Appendix A. Example Template Usage

Level # R l T 1 Version # and Date
ole lemplate
2 P 01a_070593
Template Type -
Name Unique Identifier
Inspector SWAT SP TEAM_INSP
Purpose

Performs detailed analysis of inspection artifact and provides documented findings of defects.

Comments

Note on the supporting documentation that there are two types of inspectors.

Additional States/Descriptions

[None]

Associated Authority
(via Internal Constraints)
and Applicable Events

[TBD]

Part Of

SWAT_SP_TEAM

Composed Of

SWAT_SP_TEAM_
INSP_KEY

SWAT _SP_TEAM_
INSP_REG

Supported Events

[TBD]

External Constraints

SWAT _CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A-26

Appendix A. Example Template Usage

Level # R l T l Version # and Date
ole lemplate
3 D 01a_070593
Template Type -
Name Unique Identifier
Key Inspector SWAT_SP_TEAM_INSP_KEY
Purpose

Performs expert detailed analysis of inspection artifact and provides documented findings of defects.

Comments

May also be asked to perform in the role of a reader. (A key inspector that has performed all
nonmoderator roles at a formal inspection is eligible for training as a moderator.)

Additional States/Descriptions

[None]

Part Of

SWAT SP_TEAM_INSP

Composed Of

[None]

Supported Events

[TBD}

Associated Authority
(via Internal Constraints)
and Applicable Events

[TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A-27

Appendix A. Example Template Usage

Level # R l T l Version # and Date
ole lemplate
3 P 01a_070593
Template Type -
Name Unique Identifier
Regular Inspector - SWAT_SP_TEAM_INSP_REG
Purpose

Performs analysis of inspection artifacts, and provides documented findings of defects.

Comments

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events
[Nonej
[TBD]
Part Of Supported Events

SWAT_SP_TEAM_INSP

[TBD]

Composed Of

[None]

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A28

Appendix A. Example Template Usage

Level # R l T l Version # and Date
ole lemplate
2 P 01a_070593
Template Type -
Name Unique Identifier
Scribe SWAT_SP_TEAM_SCRIBE
Purpose

Takes detailed notes, using an inspection log, of all defects discussed at the inspection meeting.

Comments

This role is NOT to be performed by clerical, administrative, secretarial, or support staff. This is to
be a technical person performing in a technical capacity.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events

[None]

[None]
Part Of Supported Events
SWAT _SP_TEAM
SWAT_ET _INSP_I-MTG

Composed Of

[None]

External Constraints
SWAT _CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass

A-29

Appendix A. Example Template Usage

Step 5. Construct Product Templates. The process analyst references his work schedule and sees that the
schedule calls for product templates to be constructed next. Having had no special problems with the
proceeding steps, the analyst decides that there is no reason to deviate from that plan at this point and
proceeds with establishing the Product class templates.

As with the other steps, the analyst begins by establishing an indented list of the main products that
are created by, or otherwise manipulated by, the SWAT inspection process. The initial indented list
is as follows:

Inspectable Artifacts
Ada Software
Ada Package Specifications
Ada Package Specifications and Package Bodies
Technical Guides
End-User Guides
System Administration Guides
Installation Guides
Miscellaneous Technical Documents
Required Inspection Documentation
Error Logs
Trivial Error Log
Preparation Error Log
Inspection Summary Report
Software Inspection Summary Report
Technical Documentation Inspection Summary Report
Inspection Memos
Inspection Invitation Memo
Inspection Exit Memo
Inspection Close Memo

As before, the analyst takes a moment to note the recommended set of default states pertaining to
products in general:

Default Set of Product States:
Unauthorized
Authorized
In_Progress
In_Rework
Disabled
Suspended
Cancelled
Completed

A-30

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 e o 01a_070693
Name Unique Identifier
Inspectable Artifact SWAT_TP_ART
Purpose

These products are characterized by all being susceptible to the SWAT inspection process.

Comments

Currently, the SWAT inspection process focuses upon Ada artifacts and technical documentation
artifacts. However, standards, etc., exist to support a wider variety of items. Expansion of the
SWAT program will occur as more people are trained in this process.

Additional States : Descriptions Part Of
Needs Inspection EProduct has not yet passed inspection. [None]
Released 'Product has passed inspection and
' can be returned into main-
: stream processing. Composed Of
X SWAT_TP_ART_ADA
. SWAT_TP_ART GUIDE
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]
External Constraints
SWAT_CE_PPG
Revision History

01a_070693 —~ Initial Version; 1st high level pass

A3l

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 —— 0Ola_070693
Name Unique Identifier
Inspectable Ada Artifact SWAT_TP_ART _ADA
Purpose

Software for delivered systems.

Comments

These products are all Ada code modules: package specs, bodies, or both.

Additional States

[None]

' Descriptions

[None]

Part Of

SWAT_TP_ART

Composed Of

SWAT_TP_ART_
ADA_SPEC

Evolves From Events

State Transitions (Event/Step)

SWAT TP_ART_
ADA_BODY

[TBD] [TBD]
External Constraints
SWAT CE_PPG
SWAT _CE_PPG_SPC
Revision History

01a_070693 — Initial Version; 1st high level pass

A-32

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 Template Type 013_070693
Name Unique Identifier
Ada Package Specification SWAT TP_ART_ADA_SPEC
Purpose
Ada Package specifications primarily assist with verifying the systems design.
Comments
Additional States ' Descriptions Part Of
[None] E [None] SWAT_TP_ART_ADA
' Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]

External Constraints

SWAT_CE_PPG

SWAT_CE_PPG_SPC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-33

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 e 0la_070693
Name Unique Identifier
Ada Package Body SWAT_TP_ART_ADA_BODY
Purpose
Ada Package Body (with the specification implied or explicit) for product software support.
Comments
Additional States + Descriptions Part Of
[None] X [None] SWAT_TP_ART_ADA
: Composed Of
; [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]
External Constraints
SWAT _CE_PPG
SWAT_CE_PPG_SPC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-34

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Typep 01 a_070693
Name Unique Identifier

Technical Guides

SWAT TP_ART GUIDE

Purpose

Explain and support all aspects of installing, using, and maintaining the Ada software product.

Comments

Expanding the types of guides being inspected is an ongoing area of growth. When necessary, new
types of documentation can be handled as “miscellaneous” technical guides until more formal des-
ignations and support.can be developed.

Additional States

[None]

Descriptions

[None]

Part Of

SWAT TP_ART

Composed Of

SWAT_TP_ART_GUIDE_
USER

SWAT_TP_ART_GUIDE_

Evolves From Events

[TBD]

State Transitions (Event/Step)

[TBD]

INSTALL

SWAT_TP_ART GUIDE_
SA

SWAT TP_ART GUIDE_
MISC

External Constraints

SWAT_CE_PPG

SWAT CE_PPG_
X-TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-35

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 —— 01a_070693
Name Unique Identifier
Technical User Guide SWAT_TP_ART_GUIDE=USER
Purpose
Explains and supports all aspects of using the Ada software product.
Comments '
Additional States EDescriptions Part Of
[None] [None] SWAT_TP_ART_GUIDE
' Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]
External Constraints
SWAT_CE_PPG
SWAT _CE_PPG_
X-TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-36

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 s 01a_070693
Name Unique Identifier

System’s Administrator Guide

SWAT_TP_ART_GUIDE_SA

Purpose

Explains and supports all aspects of supporting the Ada software product.
Comments :
Additional States :T)escriptions Part Of
[None] X [None] SWAT TP_ART_GUIDE

! Composed Of
X [None]

Evolves From Events State Transitions (Event/Step)

[TBD] [TBD]

External Constraints

SWAT_CE_PPG

SWAT_CE_PPG_
X—TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-37

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 e — 0la_070693
Name Unique Identifier
Installation Guide SWATE_ART " GUIDE_INSTALL
Purpose

Explains all aspects of installing (and removing) the Ada software product.

Comments

Additional States

E Descriptions

Part Of

[None] [None] SWAT_TP_ART GUIDE
. Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TED]

External Constraints

SWAT CE_PPG

SWAT_CE_PPG_
X—TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-38

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 e 01a_070693
Name Unique Identifier

Miscellaneous Technical Guide

SWAT_TP_ART_GUIDE_MISC

Purpose

Explains any essential information not already provided by other technical documentation.

Comments

This is essentially a catchall designation. If a technical guide does not fit under any of the other
categories, it can be designated and inspected as a miscellaneous technical guide.

Additional States : Descriptions Part Of
[None] E [None] SWAT _TP_ART GUIDE
: Composed Of
\ [None]
Evolves From Events State Transitions _Event/Step)
[TBD] [TBD]
External Constraints
SWAT_CE _PPG
SWAT _CE _PPG_
X~-TECHDOC
Revision History

01a_070693 — Initial Version; 1st high level pass

A-39

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 Template Type O 1 a_070693
Name Unique Identifier
Required Inspection Documentation SWAT_TP_DOC
Purpose

Provides a paper audit trail of the essential functions and events of the inspection process.

Comments

All of the documents represented as “children” of this class (regardless how many generations
removed) must be produced by some event in the inspection process. These are mandatory, and if the
model does not capture where they are produced, then re-examine the event templates and correct.

Additional States EDescriptions Part Of
[None] E [None] ‘ [None]

: Composed Of

X SWAT_TP_
X DOC_LOG

Evolves From Events State Transitions (Event/Step) SWAT _TP_
DOC_RPT

[TBD) [TBD]
External Constraints

SWAT_CE_PPG

Revision History

0la_070693 — Initial Version; 1st high level pass

A-40

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type O 1 3_070693
Name Unique Identifier
Error Logs _ SWAT TP_DOC_LOG
Purpose
Log defects, by location, type, and severity, of inspected items.
Comments
Currently, standardized error logs are used; however, customized or artifact-specific logs are being
considered.
Additional States iDescriptions Part Of
[None] E [None] SWAT _TP_DOC
: Composed Of
X SWAT_TP_DOC_
: LOG_TRIV
Evolves From Events State Transitions (Event/Step) SWAT _TP_DOC_
LOG_PREP
[TBD] [TBD]
External Constraints
SWAT_CE_PPG
Revision History

01a_070693 — Initial Version; 1st high level pass

A-4]

Appendix A. Example Template Usage

Level # Version # and Date

Product T
3 roduet Jemplate 0la_ 070693

Name Unique Identifier

Trivial Error Log SWAT_TP_DOC_LOG_TRIV
Purpose T B

Logs trivial defects by location, type, and severity of inspected items.
Comments :

These defects are not discussed during the inspection meeting. Instead, the logs are turned in at
the inspection meeting by the inspectors. They are delivered to the producers for use in correcting
the item under inspection. These logs also become a part of permanent records.

Additional States EDescriptions Part Of
[None] E [None] SWAT _TP_DOC_LOG

: Composed Of
: [None]

Evolves From Events State Transitions (Event/Step)

[TBD] [TBD]
External Constraints
SWAT CE_PPG

Revision History

0la_070693 — Initial Version; 1st high level pass

A-42

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 e 01a_070693
Name Unique Identifier

Preparation Error Log

SWAT_TP_DOC_LOG_PREP

Purpose

Logs nontrivial defects by location, type, and severity found during inspection.

Comments

Preparation error logs contain all nontrivial defects during inspection of the artifact. These logs
are used (by the inspector who created them) during the inspection meeting. Defects are noted by
the scribe (during the meeting) and the compiled results given to the producer(s).

Additional States : Descriptions Part Of
[None] E [None] SWAT_TP_DOC LOG

: Composed Of
: [None]

Evolves From Events State Transitions (Event/Step)

[TBD] [TBD]
External Constraints
SWAT _CE_PPG
Revision History

01a_070693 — Initial Version; 1st high level pass

A-43

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 —— 0la_070693
Name Unique Identifier
Inspection Summary Reports SWAT_TP_DOC_RPT
Purpose

Provide a variety of useful, summarized information for management and for archival.

Comments

Typically, summary reports are tailored to the artifacts subject to inspection. Currently, however, only
two such tailored report formats exist (shown below). Work is being done on considering more highly

tailored summary reports.

Additional States EDescriptions Part Of
[None] E [None] SWAT_TP_DOC
. Composed Of
: SWAT _TP_DOC_
. RPT_S-WARE
Evolves From Events State Transitions (Event/Step) SWAT_TP_DOC_
RPT_T-DOC
[TBD] [TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

Appendix A. Example Template Usage

Level # Version # and Date

Product Templat
3 = ':‘:EplateeTyrgp = 01 a_070693

Name Unique Identifier
Inspection Software Summary Report SWAT_TP_DOC_RPT_S—WARE
Purpose

Provides a variety of useful, summarized information for management and for archival.

Comments

This summary report is focused specifically on collecting data which supports the metrics developed
for monitoring not only product quality but also for monitoring various characteristics of the SWAT
formal inspection process itself.

Additional States : Descriptions Part Of
[None] : [None] SWAT_TP_DOC_RPT

: Composed Of
' [None]

Evolves From Events State Transitions (Event/Step)

[TBD] [TBD]
External Constraints
SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-45

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 E——— Ola_070693
Name Unique Identifier
Inspection Technical Document Summary Report SWAT_TP_DOC_RPT _T-DOC
Purpose

Provides a variety of useful, summarized information for management and for archival.

Comments

This summary report is focused specifically on collecting data which supports the metrics developed
for monitoring not only product quality but also for monitoring various characteristics of the SWAT
formal inspection process itself.

p—

Additional States * Descriptions Part Of
[None] : [None] SWAT_TP_DOC_RPT

' Composed Of
X [None]

Evolves From Events State Transitions (Event/Step)

[TBD] [TBD]
External Constraints
SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-46

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 S 01a_070693
Name Unique Identifier

Inspection Memorandums

SWAT TP_MEMO

Purpose

Provide written announcements of event transitions within the SWAT inspection process.

Comments

Memorandums all have basic “boilerplate” versions used to create the memos. The memos are used
to provide details to formalize announcing what is about to happen and to formalize acknowledging
what has happened. As such, these serve as excellent audit trails of transpiring events.

Additional States

[None]

Descriptions

[None]

Part Of

[None]

Composed Of

SWAT_TP_MEMO
I-INV

Evolves From Events

[TBD)

State Transitions (Event/Step)

[TBD]

SWAT_TP_MEMO
I-EXIT

SWAT_TP_MEMO
I-DONE

External Constraints

SWAT _CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-47

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Temp]ate 'Iypep O 1 3_070693
Name Unique Identifier

Inspection Invitation Memorandum

SWAT_TP_MEMO_I-INV

Purpose

Provides all participants with a written request to attend an inspection meeting.

Comments

These memorandums detail such information as the name of the inspected artifact, the date and time
of the inspection, where the inspection will be conducted, and who to contact for further information.

Additional States ' Descriptions Part Of
[None] [None] SWAT_TP_MEMO
, Composed Of
Evolves From Events State Transitions (Event/Step) [None]
[TBD] [TBD]

External Constraints

SWAT CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-48

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 e 01a_070693
Name Unique Identifier

Inspection Exit Memorandum

SWAT_TP_MEMO_I-EXIT

Purpose

Provides all participants with a written acknowledgment of the end of an inspection meeting.

Comments

Included on this memorandum are any action items decided during the meeting and a reiteration of
what is expected from whom. Also noted are any relevant details regarding (possible) reinspections.

Additional States ' Descriptions Part Of
[None] [None] SWAT_TP_MEMO
X Composed Of
Evolves From Events State Transitions (Event/Step) [None]
[TBD] [TBD]
External Constraints
SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-49

Appendix A. Example Template Usage

Level # d Version # and Date
Product Template
2 e 0la_070693
Name Unique Identifier

Inspection Done Memorandum

SWAT_TP_MEMO_I-DONE

Purpose

Provides written acknowledgement that a product was released from the inspection process.

Comments

This memorandum not only goes to participants, but it is also forwarded to all interested or relevant
managers. Most important, this memorandum details the release status of the inspected artifact
(i-e., it passed inspection or failed inspection, etc.).

Additional States

[None]

Descriptions

[None]

Part Of

SWAT TP_MEMO

Composed Of

Evolves From Events

[TBD)

(TBD]

State Transitions (Event/Step)

[None]

External Constraints

SWAT CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

Appendix A. Example Template Usage

Step 6. Bind External/Role/Product Templates with Event Templates. At this point, the analyst feels he has
a reasonable “firstcut” representation of a high level view of the SWAT inspection process. Before
proceeding with developing additional templates at the class level, the analyst prefers to bind the
existing templates and to evaluate the consistency of the model to date.

The following pages show the updated templates. Note that the revision section of the template are
a simple indicator of which templates were updated.

A-51

Appendix A. Example Template Usage

Level # Version # and Date
1 Management Template 0lb 070793
Template Type -
Name Unique Identifier
SWAT _Process SWAT
Purpose
Inspect SWAT Team Process.
Comments
Additional States
Entry Criteria Internal Processing Exit Criteria
(SWAT_CE_VP:: W .
Compliance_Achieved| In Parallel Do... S AI‘_I({I:Eq_“\iIrI; Cessation
SWAT state is In_Progress -
OR Perform SWAT _EA_INSPECT OR
Perform SWAT_ET_CAUSAL
SWAT_CE_VP:: Perform SWAT_EA_PROC-IMP SWAT CE VP:
Compliance_Waived) | yntil ~ Approve_Cessation)
(SWAT_CE_VP::
Require_Cessation
OR
Throughputs | Supports [Moderator asks to cancel]) ::nterr;l. s External
SWAT state is Cancelled onstraints | Constraints
[None] SWAT _SP_
S—MOD SWAT_CE._
Parent Event(s)
Child Events
SWAT_EA_INSP

SWAT_ET_CAUSAL
SWAT_EA_PROC-IMP

Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-52

Appendix A. Example Template Usage

Level #

2

Management Template

Version # and Date

Template Type

01b_070793

Name
Inspection

Unique Identifier
SWAT _EA INSP

Purpose

This is the overall inspection activity and contains, as shown below, several stages.

Comments

[None]

Additional States

[None]

Entry Criteria

SWAT::In_Progress

Internal Processing

SWAT_EA_INSP state is In_Progress
1) Perform SWAT_ET_INSP_PLAN
Perform SWAT_ET_INSP_OVER
Perform SWAT_ET_INSP_PREP
Perform SWAT_ET_INSP_I-MTG

Exit Criteria

SWAT_EA_INSP::Complete

SWAT TP_ART:: SWAT_TP_ART::
Needs_Inspection Perform SWAT_ET_INSP_REWORK Released
- Perform SWAT_ET_INSP_FOLLOW
If Reinspection Needed
Go To (1)]
SWAT_EA_INSP state is.Complete
Throughputs | Supports Internal External
Constraints Constraints
SWAT _SP
SXVI?;-TP- TEAM ~ [TBD] SWAT_CE_
SWAT TP MOD Parent Event(s) PPG
DOC SWAT
SWAT TP_ | SWAT sp | Child Events
MEMO_ TEAM ~ SWAT_ET_INSP_PLAN
I-INV SWAT_ET_INSP_OVER
I-EXIT SWAT_ET_INSP_PREP
I-ONE SWAT_ET_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
Revision History

0la_070493 — Initial Version; 1st high level pass

01b_070793 —

Initial Version; Binding templates

A-53

Appendix A. Example Template Usage

Level # . Version # and Date
3 Production Template 01b 070793
Template Type —
Name Unique Identifier
Planning SWAT_ET_INSP_PLAN
Purpose
This represents the planning stage of the inspection activity.

Comments

Entry Criteria Internal Processing Exit Criteria

SWAT_EA_INSP:In_Progress| SWAT_ET_INSP_PLAN state is SWAT ET_INSP_PLAN::

In_Progress Complete

Evaluate the Item to be Inspected
Estimate the expected inspection rate
Construct a schedule
Assign personnel to the schedule
Confirm personnel availability
Adjust/Redo schedule as necessary
SWAT_ET_INSP_PLAN state is

Products Supports Complete Constraints

SWAT TP_ | SWAT SP_
ART S—MOD
Parent Event(s)
SWAT SP_ SWAT_EA_INSP
TEAM_ | Child Events
MOD
Research

Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-54

Appendix A. Example Template Usage

Level # P d . T 1 Version # and Date
roduction lemplate
3 ST 01b_070793
Name Unique Identifier
Overview SWAT _ET _INSP_OVER
Purpose

This represents the overview stage of the inspection activity.

Comments

Although the Supports section shows that producers participate in this activity, this is optional (in
practice, however, producers almost always attend). Note that the reader presents the overview.

Entry Criteria

SWAT_EA_INSP::In_Progress

Internal Processing

SWAT _ET_INSP_OVER state is

Exit Criteria

SWAT_ET_INSP_OVER::

and In_Progress Complete
SWAT_EA_INSP_PLAN:: Introduce Objective
Complete Introduce Members
Have Reader present the item to
be inspected
Review preparation time and schedule
Dismiss meeting :
SWAT_ET_INSP_OVER state is
Products Supports Complete Constraints
swaT Tp_ | SWALSP.
ART MOD
STVE%SP_ Parent Event(s)
READ SWAT_EA_INSP
SWAT _SP_ |} Child Events
TEAM_
PROD
| SWAT _SP_
Research TEAM
INSP~
Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-55

Appendix A. Example Template Usage

Level # P d . T 1 Version # and Date
roduction lemplate
3 e 01b_070793
Name Unique Identifier
Preparation SWAT_ET_INSP_PREP
Purpose

This represents the preparation stage of the inspection activity.

Comments

The preparation stage is characterized by all inspectors (both key and otherwise) reviewing the
material for defects and completing trivial error logs and preparation error logs (both of which
are brought to the actual inspection meeting).

Entry Criteria

Internal Processing
SWAT_ET_INSP_PRERP state is

Exit Criteria

In_Progress
Disperse material to be inspected and
SWAT_EA_INSP:In_Progress associated support forms SWAT_ET_INSP_PREP:
and Each Inspector Does: Complete
SWAT_EA_INSP_OVER:: Review of Relevant Standards
Complete Personal Inspection of Item
Completes Trivial Error Log
Completes Preparation Log
Completes Preparation_Exit
Form (Checklist)
END [Each Inspector Does)
Products Supports Moderator Collects/Verifies Checklists | Constraints
Moderator distributes Inspection
SWAT TP SWAT_SP_ Invitation letter SWAI“CE"'PPG
ART - TEAM_ SWAT _ET_INSP_PRERP state is
MOD Complete
Parent Event(s)
S}’)VOAE.{%G SWAT_EA_INSP
TRIV @~ Child Events
PREP
Research

Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-56

Appendix A. Example Template Usage

Level # . Version # and Date
3 Production Template 01b 070793
Template Type —_
Name Unique Identifier
Inspection_Meeting SWAT_ET_INSP_I-MTG
Purpose
This represents the actual inspection (by the group) of the item to be inspected.
Comments
Entry Criteria Internal Processing Exit Criteria

Produce SWAT_TP_MEMO_I-INV
SWAT_ET_INSP_I-MTG state is

SWAT_ET_INSP_I-MTG::

SWAT_EA_INSP::In_Progress In_Progress
and Take Attendance Complete
SWAT_EA_INSP_PREP:: When (sufficient attendance)
Complete Review Purpose
Collect SWAT_TP_DOC_
LOG_TRIV
Perform Product Inspection
Review Findings |
g\';v og% cthP - Supports END [wll)l:::;rmme if reinspection req’d Constraints
SWAT TP Produce SWAT_TP_MEMO_I-EXIT SWAT_CE_PPG
DOC LOG SWAT_ET_INSP_I-MTG state is
TRIV ~ | SWAT_SP_ Complete
PREP TEAM_
SWAT TP_ (all) Parent Event(s)
DOC_RPT SWAT_EA_INSP
SWAT TP _ Child Events
MEMO_
I-INV
I-EXIT
Research
Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-57

Appendix A. Example Template Usage

Version # and Date

SWAT_EA_INSP::In_Progress

SWAT _ET_INSP_REWORK state is

In_Progress

Each SWAT_SP_TEAM_PROD:

Level # .
3 Production Template 01b 070793
Template Type —_

Name Unique Identifier

Rework SWAT _ET_INSP_REWORK
Purpose

Perform the necessary changes and updates to remove defects detected during inspection.
Comments
Entry Criteria Internal Processing Exit Criteria

SWAT _ET_INSP_REWORK::

01a_070493 — Initial Version; 1st high level pass
01b_070793 - Initial Version; Binding templates

and Evaluates pertinent defects Complete
SWAT EA INSP I-MTG:: Alters product only to correct
~ Complete the defect
Notes location and scope of
changes
If Req’d: makes before and after
listings until all defects
addressed *
Products Supports SWAT_SP_TEAM_MOD notified that Constraints
SWAT TP all changes are complete
ART SWAT SP SWAT_ET_INSP_REWORK state is
TEAM Complete
SWAT_TP, -
pocLoG_| MOD
TRIV. Parent Event(s)
PREP SWAT_EA_INSP
SW, AT__’I‘P_ SW, AT_SP_ Child Events
MEMO_ TEAM_
I-DONE PROD
Research
Revision History

A-58

Appendix A. Example Template Usage

Level # P d] T 1 Version # and Date
roduction lemplate
7
3 e e 01b_070793
Name Unique Identifier
Follow-up SWAT _ET _INSP_FOLLOW
Purpose

Verify that the authors/producers have addressed all defects detected by inspectors.

Comments

Occasionally, the nature of the changes to the inspected item are such that the moderator
may elect to call a reinspection (even though originally it might not have seemed necessary).
If no reinspection is necessary, this is the last (regular) stage of the inspection process.

Entry Criteria

SWAT _EA_INSP::In_Progress

Internal Processing

SWAT_ET_INSP_I-FOLLOW state is

Exit Criteria

SWAT_ET_INSP_FOLLOW::

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

d In_Progress C t
SWAT EA I?‘;ISP I-MTG:: Meet with the author(s) omple ©
~ Complete Discuss nature and scope of changes
Evaluate each change
Confirm only authorized changes made
Determine whether a reinspection needs
to be conducted |
Moderator completes the follow-up
Products Supports checklist Constraints
4 Produce SWAT_TP_MEMO_I-DONE
WAT TP | war sp | SWAT_ET_INSP_FOLLOW state is
ART TEAM Complete
SWAT_TP_ MOD
DOC_LOG_ S ey
TRIV arent Event(s)
PREP SWAT_EA_INSP
SWAT TP_ SWAT _SP_ Child Events
MEMO _ TEAM_
1-DONE PROD
'Research
Revision History

A-59

Appendix A. Example Template Usage

Level # . Version # and Date
Production Template 01b 0
2 Template Type b— 70793

Name Unique Identifier

Causal Analysis SWAT _ET_CAUSAL
Purpose

Attempt to identify common problems and suggest process changes to originate their cause.
Comments
Entry Criteria Internal Processing Exit Criteria

SWAT_ET_CAUSAL state is
In_Progress

SWAT::In_Progress

Products Supports

SWAT TP_

DOCRFT | SWAT.SP

S—-MOD

Take attendance

Review outstanding issues from prior
causal analysis meetings

Report results of trend analysis efforts

Solicit perceived problem areas from
attendees

Prioritize problem areas

Discuss/determine process changes to
reduce/remove root causes

At end of meeting; review findings

Dismiss meeting

Compile Causal Analysis Report

SWAT_ET_CAUSAL state is
Complete

SWAT ET_CAUSAL:
Complete

SWAT _SP_

Parent Event(s)
SWAT

TEAM_
(any)

Research

Child Events

Constraints

Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-60

Appendix A. Example Template Usage

Level # P d . T 1 Version # and Date
roduction lemplate
2 e 01b_070793
Name Unique Identifier

Inspection_Process_Improvement

SWAT_ET_PROC-IMP

Purpose

Improve the way in which inspections are actually conducted.

Comments

Inspection process improvement efforts are not constrained to any particular inspection subprocess.
Inspections, causal analysis, and even this process are all potentially subject to process improvement

efforts.

Entry Criteria

SWAT::In_Progress

Products

SWAT_TP_
DOC_RFT

Re earch

Supports

SWAT _SP_
S—-MOD

SWAT_SP_
TEAM

(any)

Internal Processing

SWAT_ET_PROC-IMP state is
In_Progress

Take attendance

Review outstanding issues from prior
process improvement meetings

Solicit suggestions from attendees

Organize suggestions by domain

Evaluate cost/benefit

Prioritize by estimated cost/benefit

Investigate alternatives

Compile final recommendgtions

At end of meeting; review findings

Dismiss meeting

Compile Inspection Process Improvement
Report

SWAT_ET_PROC-IMP state is
Complete

Exit Criteria

SWAT_ET_PROC-IMP::
Complete

Parent Event(s)
SWAT

Child Events

Constraints
SWAT CE_PPG

Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-61

Appendix A. Example Template Usage

Level # E 1 C . T l Version # and Date
xternal Constraint lemplate
1 - 0la_070593
Name Unique Identifier
VP Quality Assurance SWAT CE_VP
Purpose

Monitors and determines whether the SWAT inspection effort should continue or cease.

Comments

The VP of Quality Assurance has overall control and responsibility for the SWAT Inspection process.

Special Form Of
(parent)

Additional States/Description
Require_Cessation

[None) This state is used to represent the VP declaring the SWAT program
be ceased.
Approve_Cessation
This state represents VP approval of a super moderator request to
cease the SWAT inspection process.
General Form Of Constrained Events Constrained Throughputs
(list children)
[None] SWAT [None]
Constrained Supports
[None]

Revision History

01a_070593 — Initial Version; 1st high level pass

A-62

Appendix A. Example Template Usage

Level # E : 1 C . T 1 Version # and Date
xternal Constraint lemplate
1 e~ 01b_070793
Name Unique Identifier
Policies, Procedures, and Guidelines SWAT_CE_PPG

Purpose

Provide written reference standards applicable to conducting the SWAT inspection process.

Comments

All the applicable documented standards necessary for performing the SWAT inspection process
are under this group of constraints.

Special Form Of
(parent)

Additional States/Description
Require_Cessation

[None] This state is used to represent the VP declaring the SWAT program
be ceased.
Approve_Cessation
This state represents VP approval of a super moderator request to
cease the SWAT inspection process.
General Form Of Constrained Events Constrained Throughputs
(list children)
SWAT_TP_ART_ADA_(ali)
SWAT_CE_PPG_ SWAT SWAT_TP_ART_GUIDE_(all)
ADA
SWAT_EA_INSP SWAT_TP_DOC_LOG._(all)
SWAT_CE_PPG_
X-TECH- SWAT_ET_INSP_PREP SWAT_TP_DOC_RPT _(all)
DOC

SWAT_ET_INSP_I-MTG
SWAT_ET_INSP_PROC-IMP

SWAT_TP_MEM_(all)

Constrained Supports
SWAT_SP_S-MOD

SWAT_SP_TEAM_
MOD
READ
PROD
INSP_(all)
SCRIBE

[Note; Ask Human Resources for
further details on job descriptions.]

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 - Initial Version; Binding templates

A-63

Appendix A. Example Template Usage

Level # E ¢ 1 C ¢ . ¢ T l ¢ Version # and Date
Xternal constraint icmpiate
2 e noe T | 01b_070793
Name Unique Identifier

SPC Ada Quality and Style Guide

SWAT CE_PPG_ADA

Purpose
Provides Ada-specific reference standards applicable to Ada throughputs/products.
Comments
Special Form Of Additional States/Description
(parent)
SWAT _CE PPG [None]

General Form Of
(list children)

[None]

Constrained Events

SWAT

Constrained Throughputs

SWAT TP_ART_ADA
SWAT TP_ART ADA_SPEC

SWAT_TP_ART_ADA_BODY

Constrained Supports

[None]

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

Appendix A. Example Template Usage

Level # . Version # and Date
External Constraint Template
2 Template Type Olb_070793
Name Unique Identifier
Company-X Technical Documentation Guidelines SWAT _CE_PPG_X-TECHDOC
Purpose
Provide employees with guidelines, examples, and forms to support technical document development.
Comments '
Special Form Of Additional States/Description
(parent)
SWAT _CE_PPG [None]
General Form Of Constrained Events Constrained Throughputs
(list children)
SWAT_TP_ART_GUIDE
[None) SWAT SWAT _TP_ART_GUIDE_USER

SWAT_TP_ART_GUIDE_SA
SWAT_TP_ART _GUIDE_INSTALL
SWAT TP_ART_GUIDE_MISC

Constrained Supports

[None]

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-65

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
1 -~ 1D 01b_070793
emplate Type -_—
Name Unique Identifier
Super Moderator SWAT_SP_S-MOD
Purpose

Provides overall management of, and expert participation in, the SWAT Inspection Process.

Comments
Generally, the super moderator has overall responsibility to develop, manage, and steadily
expand the SWAT formal inspection process. This person also provides regular status reports
to management and incorporates their recommendations. May participate in any SWAT role.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events
[None]

[The super moderator can
exercise any of the author-

ity granted by the internal
Part Of Supported Events constraints except those
which are specifically
[None] mapped to upper-manage-
SWAT ment.]

SWAT_ET_INSP_PLAN

Composed Of SWAT_ET_CAUSAL

SWAT ET PROC—IMP
[None] -

External Constraints

SWAT _CE_PPG

Revision History

0la_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-66

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
1 ——e 01b_070793
Name Unique Identifier
Inspection Team SWAT_SP_TEAM
Purpose

Participates, as a group, in various events of the SWAT inspection process.

Comments

As indicated below, the team has certain minimum and maximum constraints on the number of

people participating in the various roles of a specific team.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events

[None]
[TBD]

Part Of Supported Events

[None]
SWAT_EA_INSP
SWAT _ET _INSP I-MTG
Composed Of
SWAT_ET_CAUSAL -
SWAT SP_ SWAT_ET PROC-IMP
MOD (1)
READ (1)
PROD (1..N)
INSP (4..6)
KEY (2..4)
REG (0..4)
SCRIBE (1)
External Constraints
[Note: Only a key inspector can
serve in the role of a reader.] SWAT CE PPG

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-67

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
2 S 01b_070793
Name Unique Identifier
Moderator SWAT_SP_TEAM_MOD
Purpose

Manages the inspection of some artifact throughout the stages of the SWAT inspection.

Comments

Works closely and coordinates with the super moderator. Moderators are key inspectors that
have received additional training to quality them for moderating inspections. Moderators are
chosen (by the super moderator) on an inspection by inspection basis.

Additional States/Descriptions

[None]

Associated Authority
(via Internal Constraints)
and Applicable Events

[TBD]

Part Of

SWAT_SP_TEAM

Composed Of

[None]

Supported Events

SWAT_EA_INSP
SWAT_ET_INSP_PLAN
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PRIéP
SWAT_ET_INSP_I-MTG
SWAT_ETI'_INSP_FOLLOW
SWAT_ET_INSP_CAUSAL
SWAT_ET_INSP_PROC—IMP

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

Appendix A. Example Template Usage

Level # R 1 T 1 t Version # and Date
ole Template
2 e 01b_070793
Name Unique Identifier
Reader SWAT ___Si_ TEAM_READ

Purpose

Presents the artifact to be inspected both during the overview and during the inspection meeting.

Comments

For any item being inspected, the reader/presenter must also have been one of the key inspectors.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events

[None]
[TBD]

Part Of Supported Events

SWAT_SP_TEAM
SWAT_ET_INSP_OVER
SWAT_ET_INSP_I-MTG
Composed Of SWAT_ET_INSP_CAUSAL
SWAT _ET INSP_PROC-IMP
[None]
External Constraints
SWAT_CE_PPG
Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-69

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
2 o 01b_070793
Name Unique Identifier
Producer SWAT_SP_TEAM_PROD
Purpose

Generally assists with the inspection and makes the necessary defect corrections.

Comments

If there are more than three producers for a given artifact, one or two key producers should be
selected to represent the artifact. He then coordinates, performs, or otherwise takes responsibility
for assuring that defects are properly removed from the inspected item.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events

[None]
[TBD]

Part Of Supported Events

SWAT_SP_TEAM
SWAT_ET_INSP_OVER
(optional)
SWAT_ET_INSP_I-MTG
Composed Of
SWAT_ET_INSP_REWORK
SWAT_ET INSP_FOLLOW
[None]
SWAT_ET INSP_CAUSAL
SWAT_ET_INSP_PROC—-IMP
External Constraints
SWAT _CE_PPG
Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-70

Appendix A. Example Template Usage

Level # R 1 T l Version # and Date
ole lemplate
2 i 01b_070793
Name Unique Identifier
Inspector SWAT_SP_TEAM_INSP
Purpose

Performs detailed analysis of inspection artifact and provides documented findings of defects.

Comments

Note on the supporting documentation that there are two types of inspectors.

Additional States/Descriptions Associated Authority
(via Internal Constraints)
and Applicable Events

[None]
[TBD]
Part Of Supported Events
SWAT_SP_TEAM SWAT_EA_INSP
SWAT_ET INSP_OVER
Composed OF SWAT_ET _INSP_PREP

SWAT_ET_INSP_I-MTG

SWAT SP_INSP_KEY
i SWAT_ET_INSP_FOLLOW

SWAT _SP_INSP_REG
== SWAT_ET_INSP_CAUSAL

SWAT_ET_INSP_PROC-IMP

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

AT

Appendix A. Example Template Usage

Level # R 1 T 1 Version # and Date
ole lemplate
3 e T 01b_070793
Name Unique Identifier
Key Inspector SWAT_SP_TEAM_INSP KEY
Purpose

Performs expert detailed analysis of inspection artifact and provides documented findings of defects.

Comments

May also be asked to perform in the role of a reader. (Also, a key inspector that has performed all
nonmoderator roles at formal inspections is eligible for training as a moderator.)

Additional States/Descriptions

[None}

Associated Authority
(via Internal Constraints)
and Applicable Events

(TBD]

Part Of

SWAT _SP_TEAM_INSP

Composed Of

[None]

Supported Events

SWAT_EA_INSP

SWAT_ET_INSP_OVER
(required)

SWAT_ET_INSP_PREP
(required)

SWAT_ET_INSP_I-MTG
(required)

SWAT_ET_INSP_FOLLOW
(optional)

SWAT_ET_INSP_CAUSAL
(required)

SWAT_ET_INSP_PROC-IMP
(required)

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-72

Appendix A. Example Template Usage

Level # R l T 1 Version # and Date
ole lemplate
3 Template Type O 1b_070793
Name Unique Identifier
Regular Inspector SWAT_SP_TEAM_INSP_REG
Purpose

Performs analysis of inspection artifacts and provides documented findings of defects.

Comments

Additional States/Descriptions

[None]

Associated Authority
(via Internal Constraints)
and Applicable Events

[TBD]

Part Of

SWAT SP_TEAM_INSP

Composed Of

[None]

Supported Events

SWAT_EA_INSP

SWAT_ET_INSP_OVER
(optional)

SWAT_ET_INSP_PREP
(optional)

SWAT _ET_INSP_I-MTG
(optional)

SWAT_ET_INSP_FOLLOW
(optional)

SWAT_ET_INSP_CAUSAL
(optional)

SWAT_ET_INSP_PROC-IMP
(optional)

External Constraints

SWAT_CE_PPG

Revision History

0l1a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-73

Appendix A. Example Template Usage

Level # R l T l Version # and Date
ole Template
2 e T 01b_070793
Name Unique Identifier
Scribe SWAT_SP_TEAM_SCRIBE
Purpose o

Takes detailed notes, using au inspection log, of all defects discussed at tHe inspection meeting.

Comments

This role is NOT to be performed by clerical, administrative, secretarial, or support staff. This is to
be a technical person performing in a technical capacity.

Additional States/Descriptions

[None]

Part Of

SWAT_SP_TEAM

Composed Of

[None]

Supported Events

SWAT_ET_INSP_I-MTG
SWAT _ET_CAUSAL
SWAT_ET_PROC-IMP

Associated Authority
(via Internal Constraints)
and Applicable Events

[None]

External Constraints

SWAT_CE_PPG

Revision History

01a_070593 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-74

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 —— 01b_070793
Name Unique Identifier
Inspectable Artifact SWAT_TP_ART
Purpose

These products are characterized by all being susceptible to the SWAT inspection process.

Comments

Currently, the SWAT inspection process is focused upon Ada artifacts and technical documentation
artifacts. However, standards, etc., exist to support a wider variety of items. Expansion of the
SWAT program will occur as more people become trained in this process.

Additional States 5Descriptions Part Of
Needs Inspection EProduct has not yet passed inspection. [None]
Released Product has passed inspection and

can be returned into
mainstream processing.

Composed Of

SWAT TP_ART ADA

SWAT_TP_ART GUIDE
Evolves From Events State Transitions (Event/Step) -

SWAT_EA_INSP

SWAT_ET_INSP_PLAN
SWAT_ET_INSP_OVER [TBD]
SWAT_ET_INSP_PREP

SWAT_ET_INSP_I-MTG External Constraints

SWAT_ET_INSP_FOLLOW SWAT _CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-75

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 e 01b_070793
Name Unique Identifier
Inspectable Ada Artifact SWAT _TP- ART_ADA

Purpose
Software for delivered systems.

Comments

These products are all Ada code modules; package specifications, bodies, or both.

Additional States EDescriptions Part Of
Compiles Clean , Indicates that the producers have
P ! confirmed that there are SWAT_TP_ART
) not any compile-time errors
, in their product.
: Composed Of
: SWAT_TP_ART _
: ADA_SPEC
L SWAT_TP_ART _
Evolves From Events State Transitions (Event/Step) ADA_BODY
[TBD] [TBD]
External Constraints
SWAT_CE_PPG
SWAT_CE_PPG_SPC
Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-76

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 ———— 0la_070693
Name Unique Identifier
Ada Package Specification SWAT_TP_ART_ADA_SPEC
Purpose
Ada Package specifications primarily assist with verifying the systems design.
Comments
Additional States EDescriptions Part Of
[None] [None] SWAT_TP_ART_ADA
, Composed Of
X [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]

External Constraints

SWAT _CE_PPG

SWAT _CE_PPG_SPC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-77

Appendix A. Example Template Usage

Level #) Version # and Date
Product Template
3 Template Type 0 1 a__070693
Name Unique Identifier
Ada Package Body SWAT _TP_ART ADA_BODY
Purpose

Ada Package Body (with the specification implied or explicit) for product software support.

Comments

Additional States : Descriptions Part Of
[None] [None] SWAT_TP_ART_ADA
. Composed Of
N [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]
External Constraints
SWAT_CE_PPG
SWAT_CE_PPG_SPC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-78

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type Olb_070793
Name Unique Identifier
Technical Guides SWAT_TP_ART GUIDE
Purpose

Explain and support all aspects of installing, using, and maintaining the Ada software product.

Comments

Expanding the types of guides inspected is an ongoing area of growth. When necessary, new types
of documentation can be handled as miscellaneous technical guides until more formal designations

and support can be developed.

Additional States

Spell-Checking Done

E Descriptions

Indicates that errors detected by a
spelling checker have been

removed.

Part Of

SWAT_TP_ART

Composed Of

SWAT_TP_ART_GUIDE_
USER

Evolves From Events

[TBD]

State Transitions (Event/Step)

[TBD]

SWAT TP_ART GUIDE_
INSTALL

SWAT_TP_ART_GUIDE_
SA

SWAT_TP_ART GUIDE_
MisC

External Constraints

SWAT _CE_PPG

SWAT CE_PPG_
X-TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-19

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 w—— 0la_070693
Name Unique Identifier
Technical User Guide SWAT_TP_ART _GUIDE_USER
Purpose
Explains and supports all aspects of using the Ada software product.
Comments ’
Additional States EDescriptions Part Of
[None] [None] SWAT_TP_ART_GUIDE
, Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
{TBD] [TBD]
External Constraints
SWAT_CE_PPG
SWAT _CE_PPG_
X-TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-80

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 Template 'Iypep O 1 a_070693
Name Unique Identifier

System’s Administrator Guide

SWAT_TP_ART GUIDE_SA

Purpose

Explains and supports all aspects of supporting the Ada software product.

Comments

Additional States

[None]

Descriptions

[None]

Part Of

SWAT_TP_ART GUIDE

Composed Of

[None]

Evolves From Events

State Transitions (Event/Step)

[TBD] [TBD]
External Constraints
SWAT_CE_PPG
SWAT_CE_PPG_
X-TECHDOC
Revision History

01a_070693 — Initial Version; 1st high level pass

A-81

Appendix A. Example Template Usage

Level # Version # and Date
3 Product Template 01b 070793
Template Type —_
Name Unique Identifier
Installation Guide SWAT_TP_ART_GUIDE_INSTALL
Purpose
Explains all aspects of installing (and removing) the Ada software product.
Comments
Additional States EDescriptions Part Of
Approved_By_Human_Factors_Grp , Indicates that human—factors related| SWAT_TP_ART GUIDE
' issues have already been
' addressed.
! Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]
External Constraints
SWAT _CE_PPG
SWAT_CE_PPG_
X-TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-82

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
3 e 01a_070693
Name Unique Identifier

Miscellaneous Technical Guide.

SWAT_TP_ART _GUIDE_MISC

Purpose

Explains any essential information not already provided by other technical documentation.

Comments

This is essentially a catchall designation. If a technical guide does not fit under any of the other
categories, it can be designated and inspected as a miscellaneous technical guide.

Additional States + Descriptions Part Of
[None] [None] SWAT_TP_ART_GUIDE
. Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]
External Constraints
SWAT_CE_PPG
SWAT _CE_PPG_
X-~-TECHDOC

Revision History

01a_070693 — Initial Version; 1st high level pass

A-83

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 = P 01b_070793
emplate Type -
Name Unique Identifier
Required Inspection Documentation SWAT _TP_DOC

Purpose

Provides a paper audit trail of the essential functions and events of the inspection process.

Comments

All of the documents represented as “children” of this class (regardless of how many generations
removed) must be produced by some event in the inspection process. These are mandatory, and if the
model does not capture where they are produced, then reexamine the event templates and correct.

Additional States : Descriptions Part Of
[None] E [None] [None]
. Composed Of
X SWAT TP_
X DOC_LOG
Evolves From Events State Transitions (Event/Step) SWAT TP_
DOC_RPT
SWAT_EA_INSP [TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-84

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Tomplate Type 01la_070693
Name Unique Identifier
Error Logs SWAT_TP_DOC_LOG
Purpose
Log defects by location, type, and severity of inspected items.
Comments ‘
Currently, standardized error logs are used; however, customized or artifact-specific logs are
being considered.
Additional States EDescriptions Part Of
[None] 5 [None] SWAT TP_DOC
. Composed Of
" SWAT_TP_DOC_
. LOG_TRIV
Evolves From Events State Transitions (Event/Step) SWAT_TP_DOC_
LOG_PREP
[TBD] [TBD]
External Constraints
SWAT _CE_PPG
Revision History

01a_070693 — Initial Version; 1st high level pass

A-85

Appendix A. Example Template Usage

Level # Version # and Date
Product Template :
3 Template Type Olb_070793
Name Unique Identifier
Trivial Error Log SWAT_TP_DOC_LOG_TRIV
Purpose

Logs trivial defects by location, type, and severity of inspected items.

Comments

These defects are not discussed during the inspection meeting. Instead, the logs are turned in at
the inspection meeting by the inspectors. They are delivered to the producers for use in correcting
the item under inspection. These logs also become a part of permanent records.

Additional States

[None]

_—

Descriptions

[None]

(]
]
1]
)
)
]
]
)
)
'
]
)
’
)
L}
L}
L]
[}
1
’

Part Of

SWAT_TP_DOC_LOG

Composed Of

[None]

Evolves From Events

SWAT_ET_INSP_PREP
SWAT_ET_INSP_I-MTG
SWAT_ET_INSP_FOLLOW

State Transitions (Event/Step)

[TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-86

Appendix A. Example Tomplate Usage

Level # Version # and Date
Product Template
3 Tomplate Type 01b_070793
Name Unique Identifier
Preparation Error Log SWAT_TP_DOC_LOG_PREP
Purpose

Logs nontrivial defects by location, type, and severity found during inspection.

Comments

Preparation error logs contain all nontri\ .al defects during the artifact’s inspection. These logs are
used (by the inspector who created them) during the inspection meeting. Defects are noted by the
scribe (during the meeting) and the compiled results given to the producer(s).

Additional States iDescriptions Part Of
[None] : [None] SWAT _TP_DOC_LOG
: Composed Of
: [None]
Evolves From Events State Transitions (Event/Step)
SWAT_ET_INSP_PREP
SWAT_ET_INSP_I-MTG (TBD]
SWAT_ET_INSP_FOLLOW
External Constraints
SWAT _CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-87

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 ——— 01b_070793
Name Unique Identifier
Inspection Summary Reports SWAT _TP_DOC_RPT
Purpose

Provide a variety of useful, summarized information for management and for archival.

| Comments

Typically, summary reports are tailored to the artifacts subject to inspection. Currently, however,
only two such tailored report formats exist (shown below). Work is done on considerably more
highly tailored summary reports.

Additional States

[None]

E Descriptions

[None]

Part Of

SWAT_TP_DOC

Composed Of

SWAT_TP_DOC._
RPT_S—WARE

Evolves From Events

SWAT_ET_INSP_I-MTG
SWAT_ET_CAUSAL
SWAT_ET_PROC-IMP

State Transitions (Event/Step)

[TBD)

SWAT_TP_DOC._
RPT_T-DOC

External Constraints

SWAT _CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-88

Appendix A. Example Template Usage

Level # Version # and Date

Product Templat
3 = ':‘:,ﬁplateeTIyip e Ola_070693

Name Unique Identifier
Inspection Software Summary Report SWAT_TP_DOC_RPT_S—-WARE
Purpose

Provides a variety of useful, summarized information for management and for archival.

Comments

This summary report is focused specifically on collecting data which supports the metrics developed
for monitoring not only product quality but also for monitoring various characteristics of the SWAT
formal inspection process itself.

Additional States ‘ Descriptions Part Of
[None] : [None] SWAT_TP_DOC_RPT
. Composed Of
' [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 —~ Initial Version; 1st high level pass

A-89

Appendix A. Example Template Usage

Level # Version # and Date

Product Templat
3 e 0la_070693

Name Unique Identifier
Inspection Technical Document Summary Report SWAT_TP_DOC_RPT T-DOC
Purpose

Provides a variety of useful, summarized information for management, and for archival.
Comments '
This summary report is focused specifically on collecting data which supports the metrics developed

for monitoring not only product quality but also for monitoring various characteristics of the SWAT
formal inspection process itself.

Additional States EDescriptions Part Of
[None] : [None] SWAT_TP_DOC_RPT
. Composed Of
: [None]
Evolves From Events State Transitions (Event/Step)
[TBD] [TBD]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-90

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 —— 0la_070693
Name Unique Identifier

Inspection Memorandums

SWAT_TP_MEMO

Purpose

Provide written announcements of event transitions within the SWAT inspection process.

Comments

Memorandums all have basic “boilerplate” versions used to create the memos. The memos provide
details to formalize announcing what is about to happen and to formalize acknowledging what has
happened. As such, these serve as excellent audit trails of transpiring events.

Additional States

[None]

5 Descriptions

i Vi iy

[None]

Part Of

[None]

Composed Of

SWAT_TP_MEMO
I-INV

Evolves From Events

(TBD]

State Transitions (Event/Step)

[TBD]

SWAT_TP_MEMO
I-EXIT

SWAT TP_MEMO
I-DONE

External Constraints

SWAT _CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass

A-91

Appendix A. Example Template Usage

Level # : Version # and Date
Product Template
2 Template Typep 0 1 b__070793
Name Unique Identifier

Inspection Invitation Memorandum

SWAT TP_MEMO I-INV

Purpose

Provides all participants with a written request to attend an inspection meeting.

Comments

These memorandums detail such information as the name of the inspected artifact, the date and time
of the inspection, where the inspection will be conducted, and who to contact for further information.

Additional States

[None]

i Descriptions

[None]

Part Of

SWAT TP_MEMO

Composed Of

Evolves From Events

SWAT_EA_INSP
SWAT_ET_INSP_I-MTG

State Transitions (Event/Step)

[TBD]

[None]

Externs’ Constraints

SWAT CE_PPG

Revision History

O1a_070693 — Initial Version; 1st high level pass
01b_070793 ~ Initial Version; Binding templates

A-92

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 e 01b_070793
Name Unique Identifier

Inspection Exit Memorandum

SWAT_TP_MEMO I—-EXIT

Purpose

Provides all participants with a written acknowledgment of the end of an inspection meeting.

Comments

Included on this memorandum are any action items decided during the meeting and a reiteration of
what is expected from whom. Also noted are any relevant details regarding (possible) reinspections.

Additional States

[None]

Descriptions

[None]

Part Of

SWAT TP_MEMO

Composed Of

Evolves From Events

SWAT _EA_INSP
SWAT_ET_INSP_I-MTG

State Transitions (Event/Step)

[TBD]

[None]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-93

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type 0 1 b_070793
Name Unique Identifier

Inspection Done Memorandum

SWAT_TP_MEMO_I-DONE

Purpose

Provides written acknowledgement that a product was released from the inspection process.

Comments

This memorandum not only goes to participants, but it is also forwarded to all interested or relevant
managers. Most important, this memorandum details the release status of the inspected artifact
(i.e., it passed inspection and/or failed inspection).

Additional States

[None]

E Descriptions

[None]

Part Of

SWAT_TP_MEMO

Composed Of

Evolves From Events

SWAT_EA_INSP
SWAT_ET_INSP_FOLLOW

State Transitions (Event/Step)

[TBD]

[None]

External Constraints

SWAT_CE_PPG

Revision History

01a_070693 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates

A-94

Appendix A. Example Template Usage

Step 7. Construct Low Level Event Templates. According to the original plan, the analyst re-evaluates the
process being defined and determines whether there are any advantages to introducing more detail
to the process model. By doing so, some events that had previously been represented by production
templates might be promoted to activities represented by management templates (with one or more
supporting activities or tasks). The analyst proceeds by expanding upon the original indented event
list and yielding the new list below:

Inspection SWAT Team Process
Inspection Activity
Planning
Overview
Preparation
Inspection Meeting
Review of Purpose
Collection of Trivial Logs
Product Inspection
Review of Findings
Reinspection Determination
Rework
Follow—up
Causal Analysis Activity
Inspection Process Improvement Activity
Consensus Recommendations
Presentation to Management

Default Set of Process States:
Pre—Enabled
Enabled
In—Progress
Disabled
Suspended
Cancelled
Completed

As a result of expanding the indented list, the following two templates are altered:

e SW_ET INSP-I_ MTG which had been a production template, is altered to
SW_EA_INSP_I-MTG, a management template.

e SW_ET PROC-IMP which had been a production template, is altered to SW_EA_PROC-IME,
a management template.

A9S

Appendix A. Example Template Usage

Level # M T 1 Version # and Date
anagement lemplate
3 Template Type O 1 C_O70993
Name Unique Identifier

Inspection_Meeting

SWAT_EA_INSP_I-MTG

Purpose

This represents the actual inspection (by the group) of the item to be inspected.

Comments

Additional States

Entry Criteria

SWAT_EA_INSP::In_Progress

Internal Processing

Produce SWAT TP_MEMO_I-INV
SWAT_EA_INSP_I—MTG state is

Exit Criteria

SWAT _EA_INSP_I-MTG::

In_Progress
and Take Attendance Complete
SWAT_EA_INSP_PREP:: When (sufficient attendance)
Complete’ Do SWAT_ET_INSP_I-MTG_PURP
Do SWAT_ET_INSP_I-MTG_TLOG
Do SWAT_ET_INSP_I-MTG_INSP
Do SWAT_ET_INSP_I-MTG_FIND
Do SWAT_ET_INSP_I-MTG_REIN
Throughputs | Supports END [When Internal External
Produce SWAT_TP_MEMO_I-EXIT Constraints | Constraints
SWAT TP SWAT_EA_INSP_I-MTG state is onstrain
ART™ ~ Complete
SWAT Tp_ | SWAT_SP_ SWAT_CE_
D’?‘lgl\[; OG (all) - Parent Event(s) PPG
PREP SWAT_EA_INSP
SWAT_TP_ Child Events
DOC_RPT SWAT_ET_INSP_I-MTG_
SWAT _TP_ PURP
MEMO _ TLOG
I-INV INSP
I-EXIT FIND
REIN

Revision History

01a_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates
01c_070993 — 2nd Pass

A-96

Appendix A. Example Template Usage

Level # M T 1 Version # and Date
anagement lemplate
2 e 01c_070993
Name Unique Identifier

Inspection_Process_Improvement

SWAT_EA_PROC-IMP

Purpose

Improves the way in which inspections are actually conducted.

Comments

Inspection process improvement efforts are not constrained to any particular inspection subprocess.
Inspections, causal analysis, and even this process are all potentially subject to process improvement

efforts.
Additional States .
Entry Criteria Internal Processing Exit Criteria
SWAT_EA_PROC-IMP state is
In_Progress
Take attendance

SWAT::In_Progress

Throughputs

SWAT_TP_
DOC_RFT

Supports
SWAT _SP_
S-MOD

SWAT SP_

(any)~

Review outstanding issues from prior
process improvement meetings

Solicit suggestions from attendees

Organize suggestions by domain

Evaluate cost/benefit

Prioritize by estimated cost/benefit

Investigate alternatives

Compile final recommendations

At end of meeting; review findings

Dismiss meeting

Compile Inspection Process Improvement
Report

SWAT_EA_PROC-IMP state is

_Complete

SWAT_EA_PROC-IMP::
Complete

Parent Event(s)
SWAT

Child Events

SWAT_ET_PROC-IMP_RECOM
SWAT_ET_PROC~IMP_PRESENT

Internal External
Constraints Constraints

SWAT CE _
PPG

Revision History

0la_070493 — Initial Version; 1st high level pass
01b_070793 — Initial Version; Binding templates
Olc_070993 — 2nd Pass

Appendix A. Example Template Usage

As shown below, the following new task templates are added:

and

SW_ET_INSP_I-MTG_PURP
SW_ET_INSP_I-MTG_TLOG
SW_ET_INSP_I-MTG._INSP

SW_ET _INSP_I-MTG_FIND
SW_ET _INSP_I-MTG_REIN

SW_ET_PROC-IMP_RECOM
SW_ET_PROC-IMP_PRESENT

A%

Appendix A. Example Template Usage

SWAT _EA_INSP_I-

Level # . Version # and Date
4 Production Template 0lc 070993
Template Type C_.

Name Unique Identifier
Inspection Meeting Purpose SWAT_ET_INSP I-MTG_PURP

Purpose
With all in attendance, review the specific goals of this inspection meeting.

‘Comments

Entry Criteria Internal Processing Exit Criteria

SWAT_ET_INSP_I-MTG_PURP
state is In_Progress

SWAT_ET_INSP_I-MTG,

MTG: Commence when " PURP::Complete
In_Progress Start_Time has Passed AND
Sufficient Key Inspectors Available OR
else
Wait until sufficient key inspection | SWAT_ET_INSP_I-MTG_
OR PURP::Cancel
Moderator decides to cancel
If SWAT_SP_TEAM_MOD has NOT
decided to cancel
Briefly overview item :
Products Supports Note applicable SWAT _CE_PPG Constraints
State agenda SWAT_CE_PPG
SWAT TP_ | SWAT SP_ |SWAT_ET_INSP_I-MTG_PURP
ART TEAM_ state is Complete
yl%?) Parent Event(s)
READ SWAT_EA_INSP_I-MTG
INSP_ [Child Events
(all)
SCRIBE
Research
Revision History

01c_070993 — Extending Model (2nd pass)

A9

Appendix A. Example Template Usage

Level # . Version # and Date
Production Template
4 e 0O1c_070993
Name Unique Identifier
Inspection Meeting Log Collection SWAT_ET_INSP_I-MTG_TLOG
Purpose
Collects all trivial error logs.
Comments
Trivial error logs document those items that do not need to be discussed before the entire
inspection team.
Euntry Criteria Internal Processing Exit Criteria
SWAT EA_INSP I~ SWAT_EtI‘_EIl\]S}’_I;MTG_TLOG SWAT_ET_INSP_I—
MTG:: For all (SWAT SPTBAM INSP KEY and | MTC-
In_Progress SWAT SP TEAM _INSP_REG) TLOG:Complete
SWAT_ET_INSP_I-MTG_ Collect SWAT TP_DOC_LOG_
PURP::Complete TRIV
Confirm primary fields all have
values (insist on metrics,
i.e., hours spent, etc.)
Have Inspector make any
necessary corrections
Products Supports SWAT_ET_INSP_I-MTG_TLOG Constraints
SWAT TP state is Complete
DOC_LOG_| SWAT_SP_
TRIV @~ | TEAM_
MOD
PROD | Parent Event(s)
READ SWAT_EA_INSP_I-MTG
INSP_ [Child Events
(al)
SCRIBE
Research
Revision History

01c_070993 ~ Extending Model (2nd pass)

A-100

Appendix A. Example Template Usage

01c_070993 ~ Extending Model (2nd pass)

Level # . Version # and Date
4 Production Template Olc 070993
Template Type C_
Name Unique Identifier
Inspection Meeting ~ Actual SWAT_ET_INSP_I-MTG_INSP
Purpose
Performs a formal inspection as a group.
Comments
Entry Criteria Internal Processing Exit Criteria
SWAT_EA_INSP_I— SWAT_ET_INSP_I-MTG_INSP SWAT_ET_INSP_I-
MTG: - state is In_Progress MTG_
In_Progress While not done INSP:Complete
- SWAT_SP_TEAM_READ presents the
SWAT_ET_INSP_I— material by advancing through it
MTG_ section by section
TLOG:Complete SWAT _SP_TEAM_INSP_(all) provides
feedback and comments based on
their notes and on the current
examination
Products Sup Encsl‘xl;Ag;_SP-TEAM-SCRIBE notes all Contoaints
SWAT TP SWAT _ET _INSP_I-MTG_INSP SWAT CE PPG
ART ~ | SWAT SP state is Complete -
SWAT_TP_ MOD
DOC_LOG_ PROD | Parent Event(s)
TRIV READ SWAT_EA_INSP_I-MTG
PREP Iszlll’)_ Child Events
W, a
“DOCRPr | SCRIBE
Research
Revision History

A-101

Appendix A. Example Template Usage

Level # . Version # and Date
4 Production Template Olc 070993
Template Type C._
Name Unique Identifier
Findings Review . SWAT_ET_INSP_I-MTG_FIND
Purpose
Review with all in attendance the composite findings.
Comments
Entry Criteria Internal Processing Exit Criteria
SWAT _EA INSP _I- SWAT_ET_INSP_I-MTG_FIND SWAT_ET _INSP_I-
MTG:: state is In_Progress MTG_
In_Progress Review all findings with those in FIND:Complete
attendance
fawrg ~ET_INSP_I- While presenting the material, remind the
= INeD. inspectors to follow their prep logs
INSP:Complete to confirm nothing missed
Update findings (a composite version of
SWAT_TP_DOC_LOG_PREP)
SWAT_ET_INSP_I-MTG_FIND
Products Supports state is Complete Constraints
SWAT_TP_ SWAT _CE_PPG
ART SWAT _SP_
TEAM_
SWAT _TP_ MOD
DOC_LOG_ PROD | Parent Event(s)
TRIV READ SWAT_EA_INSP_I-MTG
PREP INSP_ ['Child Events
(all)
SCRIBE
Research
|
Revision History

01c_070993 — Extending Model (2nd pass)

A-102

Appendix A. Example Template Usage

01c_070993 — Extending Model (2nd pass)

Level # . Version # and Date
4 Production Template lc 070993
Template Type 0 C_ 7 9
Name Unique Identifier
Inspection Meeting Purpose SWAT_ET_INSP_I-MTG_REIN
Purpose
Review with all in attendance the specific goals of this inspection meeting.
Comments)
Entry Criteria Internal Processing Exit Criteria
_ SWAT_ET_INSP_I-MTG_REIN
;Wrg._EA_INSP_I state is In_Progress SWAT_ET_INSP_I-
" In Progress Remind team of reinspection criteria MTG_
= Remind team of reinspection voting REIN:Complete
SWAT ET INSP I- process (i.e, 1 yet vote= reinspection
MTG - = - or majority, etc.)
= Take vote
FIND:Complete | 10 on SWAT TP_DOC_RPT whether
reinspection will be held
If reinspection not expected
Remind group that Moderator can -
Products Supports optionally call for reinspection Constraints
Dismiss meeting W,
S AT |swaT sp | SWAT_ET_INSP_I-MTG_REIN SWAT_CE_PPG
TEAM state is Complete
SWAT _TP_ MOD
DOC_LOG_ PROD | Parent Event(s)
TRIV READ SWAT_EA_INSP_I-MTG
PREP n‘g}l’)_ Child Events
W.
“POCRPT | SCRIBE
Research
Revision History

A-103

L

Appendix A. Example Template Usage

SWAT_ET_PROC-IMP_RECOM
state is In_Progress
SWAT_SP_S—MOD presents general

Level # . Version # and Date
Production Template
3 . 0lc_070993
Name Unique Identifier
Inspection_Process_Improvement Recommendations SWAT_ET_PROC-IMP_RECOM
Purpose
Identify primary inspection process problems and to identify alternative solutions.
Comments ‘
Entry Criteria Internal Processing Exit Criteria

SWAT_ET_PROC-IMP: trend data SWAT_ET_PROC~IMP_
:In_Progress HAVE EACH IN ATTENDANCE RECOM::Complete

Present top 2 “Opportunities”
Note on board/paper

Prioritize entire list

In priority order
Discuss problem domain
Discuss solution domain
Note top 2 or 3 most promising

Products Supports solutions Constraints
Compile composite report of findings
sggr(;"gir‘r SWAT SP and recommendations
- S—MOD SWAT_ET_PROC-IMP_RECOM
state is Complete
Parent Event(s)
SWAT_EA_PROC-IMP
SWAT _SP_ ild Ev
i Child Events
(any)
Rescarch

Revision History

Olc_070993 ~ 2nd Pass

A-104

Appendix A. Example Template Usage

Present Process Improvement Recommendations

Level # P d . T 1 Version # and Date
roduction lemplate
3 Template Type p 010_070993
Name Unique Identifier

SWAT_ET_PROC—-IMP_PRESENT

Purpose

Present group-consensus-based recommendations on process improvement to management.

Comments

The specific domain of the process improvement recommendations is that of the inspection process.
Although many other areas impact the inspection process, typically such external areas are harder to
change. This activity typically proposes changes local to the inspection process.

Entry Criteria

SWAT_ET_PROC-IMP:
:In_Progress

SWAT ET_PROC-IMP_
RECOM::Complete

Internal Processing

SWAT_ET_PROC-IMP_PRESENT
state is In_Progress
SWAT_SP_S—-MOD:
Presents general trend data
Presents overview of perceived
problem areas
Presents targeted problem areas
Presents overview of proposed
solutions (and a handout
with details, if necessary)

Exit Criteria

SWAT_ET_PROC~IMP_
PRESENT::Complete

01c_070993 — 2nd Pass

Responds to questions (with
Products Supports assistance from any Constraints
L SWAT SP TEAM MOD| oo
SWAT TP in attendance)
DOC RPT SWAT_ET_PROC-IMP_PRESENT
- state is Complete
SWAT_SP_ Parent Event(s)
S-MOD SWAT EA_PROC-IMP
Child Events
SWAT _SP_
TEAM_
Research MOD
Revision History

A-105

Appendix A. Example Template Usage

Step 8. Extend/Merge Existing Templates (External Constraints, Roles, Products). Before the analyst
creates templates from the remaining classes, he needs (originally discussed with Company-X) to
extend the initial set of templates (on the assumption that having performed more detailed analysis,
other template candidates would likely become apparent).

As shown below, only one new Role template and one new External Constraint template are added.
However, it became apparent to the analyst that considerably more products, or more accurately by-
products, were produced by the SWAT inspection process. The analyst found that a considerable num-
ber of checklists exist that detail Entry and Exit Criteria and that aid those involved in the formal
inspection process by reminding them what types of things or actions are needed and when during the
process. A total of 16 entry and exit condition checklists are used in the process. Note: The standards
for checklists are defined as an external constraint, but the checklists themselves are modeled as products.

Additionally, the analyst was told that two new memorandums and a management request form were
added to the inspections process. The analyst created the first version of each template as shown on
the following pages.

~

Default Set of External Constraint States:
Compliance_Unknown <EXPORT >
Compliance_Under_Evaluation
Compliance_Achieved
Compliance_Failure
Compliance_Waived

Default Set of Role States:
Available_Exclusively
Available_Shared
Not_Available
Disabled
Suspended

Default Set of Product States:
Unauthorized
Authorized
In_Progress
In_Rework
Disabled
Suspended
Cancelled
Completed

Following is a list of the new templates:
* Role Template: Inspection Support Technician
e External Constraint Template: Company-X Checklist Reference Manual
* Product Template: Causal Analysis Invitation Memorandum

* Product Template: Inspection Process Improvement Invitation Memorandum

A-106

Appendix A. Example Template Usage

* Product Template: (Parent and 1 child) Presentation to Management — Request Form
* Product Template: Entry/Exit Criteria Forms (parent)

— Product Template: Planning Entry Criteria Checklist

— Product Template: Planning Exit Criteria Checklist

— Product Template: Overview Entry Criteria Checklist

— Product Template: Overview Exit Criteria Checklist

— Product Template: Preparation Entry Criteria Checklist

— Product Template: Preparation Exit Criteria Checklist

— Product Template: Inspection Meeting Entry Criteria Checklist

— Product Template: Inspection Meeting Exit Criteria Checklist

— Product Template: Rework Entry Criteria Checklist

— Product Template: Rework Exit Criteria Checklist

— Product Template: Follow-up Entry Criteria Checklist

— Product Template: Follow-up Exit Criteria Checklist

— Product Template: Causal Analysis Entry Criteria Checklist

~ Product Template: Causal Analysis Exit Criteria Checklist

— Product Template: Inspection Process Improvement Entry Criteria Checklist

— Product Template: Inspection Process Improvement Exit Criteria Checklist

A107

Appendix A. Example Template Usage

Level # E 1 C] T 1 Version # and Date
5 xterna Sn?tralnt emplate Olc 070993
emplate Type -
Name Unique Identifier

Company-X Process Support Checklists

SWAT_CE_PPG_X-CHKLST

Purpose

Provide employees with process-specific checklists.

Comments

Typically, these checklists are of two types: entry criteria checklists and exit criteria checklist. In
all cases, the objective is to see that certain minimum process constraints have been followed.
Additionally, the checklists are used as an audit trail of events.

Special Form Of Additional States/Description
(parent)
SWAT_CE_PPG [None}
General Form Of Constrained Events Constrained Throughputs
(list children)
[None) SWAT_ET_INSP_PLAN [None]
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_ET_INSP_I-MTG
SWAT_ET_INSP_REWORK
Constrained Supports
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL
[None]
SWAT_ET_PROC-IMP
Revision History

0lc_070993 — 2nd Pass

A-108

Appendix A. Example Template Usage

Level # Version # and Date
Role Template
2 e T 01c_070993
Name Unique Identifier
Inspection Support Technician SWAT SP_S—-TECH
Purpose

. Provides administrative and limited technical support to the

Super Moderator.

Comments

The support technician should be thoroughly familiar with the inspection process; and may,
on occasion, attend (in a passive or background capacity) any inspection meeting,

Additional States/Descriptions Associated Aunthority
(via Internal Constraints)
and Applicable Events

[None]
[None]

Part Of Supported Events

[None}
SWAT
SWAT_ET_INSP_PLAN
Composed Of SWAT _ET_CAUSAL
SWAT_ET_PROC-IMP
[None] I
External Constraints
SWAT_CE_PPG
Revision History

01c_070993 — 2nd Pass

A-109

Appendix A. Example Template Usage

Level # Version # and Date

Product Templ
2 roduct ‘emplate 0lc 070993

Name Unique Identifier
Causal Analysis Invitation Memorandum SWAT_TP_MEMO_CAUSAL

Purpose
Provides written invitation to a causal analysis meeting.

Comments
Typically will be sent to all qualified persons.

Additional States : Descriptions Part Of
[None] E [None] SWAT_TP_MEMO
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT [TBD]
External Constraints
SWAT _CE_PPG
Revision History
01c_070993 ~ 2nd Pass

A-110

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type 0 1 C_070993
Name Unique Identifier
Process Improvement Invitation Memorandum SWAT_TP_MEMO_PROC-IMP

Purpose
Provides written invitation to a SWAT inspection process improvement meeting,

Comments
Typically will be sent to all qualified persons.

Additional States ' Descriptions Part Of

[None] E [None] SWAT _TP_MEMO

' Composed Of

Evolves From Events State Transitions (Event/Step) [None]

SWAT [TBD)

External Constraints
SWAT_CE_PPG

Revision History

01c_070993 ~ 2nd Pass

A-111

Appendix A. Example Template Usage

Level # d T l Version # and Date
Product Template
1 i 01c 071293
Name Unique Identifier

Management Inspection Forms

SWAT_TP_MGMT

Purpose

Provide a collection of forms to facilitate communication with management.

Comments
Additional States ' Descriptions Part Of

[None] E [None) [None]

, Composed Of

Evolves From Events State Transitions (Event/Step) SWAT, -%B‘Sgr-

SWAT [None]

External Constraints
SWAT_CE_PPG

Revision History

01c_071293 — 2nd Pass

A-112

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
Name Unique Identifier
Management Presentation Request SWAT_TP_MGMT_PRES—REQ
Purpose
Informs management that a set of process improvement findings are ready to be presented.
Comments
Additional States EDescriptions Part Of
SWAT_TP_MGMT
[None] ' [None]
' Composed Of
E [None]
Evolves From Events State Transitions (Event/Step)
SWAT [None]
SWAT_ET_PROC-IMP_
RECOM External Constraints
SWAT_CE_X-CHKLST
Revision History

01c_071293 ~ 2nd Pass

A-113

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
1 Template Type 010_071293
Name Unique Identifier
Inspection Entry/Exit Forms SWAT_TP_EE
Purpose

Provide a collection of checklists which define entry and exit conditions.

Comments

To date, there are no checklists that are either support or throughput specific. In all cases, the
current set of checklists address events. If this changes in the future, consider a second tier
distinction (i.e., ...EE_E_, ...EE S, ...EE T for events, support, and throughput checklists).

Additional States

[None]

E Descriptions

[None]

Part Of

[None]

Composed Of
SWAT TP_EE _

PLAN-IN, PLAN-OUT
OVER-IN, OVER-OUT,
PREP-IN, PREP-OUT,

Evolves From Events

SWAT_EA_INSP

State Transitions (Event/Step)

[None}

I-MTG-IN,
I-MTG-0UT,
REWORK-IN,
REWORK-OUT
FOLLOW-IN
FOLLOW-OUT,
CAUSAL-IN,
CAUSAL-OUT,
PROC-IMP~IN
PROC-IMP-OUT

External Constraints

SWAT_CE_PPG

Revision History

01c_071293 — 2nd Pass

A-114

Appendix A. Example Template Usage

Level # Version # and Date
Product Template :
2 Tomplats o 0lc 071293
Name Unique Identifier

Inspection Planning Entry Form

SWAT_TP_EE_PLAN-IN

Purpose

Provides a checklist that determines whether planning entry criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States EDescriptions Part Of
[None] E [None] SWAT_TP_EE
. Composed Of
Evolves From Events State Transitions (Event/Step) [None)
SWAT_EA_INSP [None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

0lc_071293 — 2nd Pass

A-118

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
Name Unique Identifier
Inspection Planning Exit Form SWAT_TP_EE_PLAN-OUT
Purpose

Provides a checklist that determines whether planning exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States ' Descriptions Part Of
[None] [None] SWAT_TP_EE
' Composed Of
Evolves From Events State Transitions (Event/Step) [None}
SWAT_ET _INSP_PLAN (None]
External Constraints
SWAT_CE_X~CHKLST

Revision History

01c_071293 — 2nd Pass

A-116

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 ———— 01c_071293
Name Unique Identifier
Inspection Overview Entry Form SWAT_TP_EE_OVER-IN
Purpose

Provides a checklist that determines whether overview entry criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States Descriptions Part Of
[None] E [Nore] SWAT_TP_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT _EA_INSP [None]
External Constraints
SWAT _CE_X--CHKLST
Revision History
01c_071293 — 2nd Pass

A-117

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Typ;p 0 1.C_O7 1293
Name Unique Identifier

Inspection Overview Exit Form

SWAT_TP_EE_OVER-OUT

Purpose

Provides a checklist that determines whether overview exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States + Descriptions Part Of
[None] [None] SWAT_TP_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_INSP_OVER [None]
External Constraints
SWAT_CE_X~CHKLST

Revision History

01c_071293 — 2ad Pass

A-118

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 e 0lc_071293
Name Unique Identifier

Inspection Preparation Entry Form

SWAT_TP_EE_PREP~IN

Purpose

Provides a checklist that determines whether preparation entry criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States * Descriptions Part Of
[None} E [None] SWAT_TF _EE
, Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_EA_INSP [None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 — 2nd Pass

A-119

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template ’lypep O].C_071293
Name Unique Identifier

Inspection Preparation Exit Form

SWAT_TP_EE_PREP-OUT

Purpose

Provides a checklist that determines whether preparation exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States ' Descriptions Part Of
[None] E [None] SWAT_TP_EE
' Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_INSP_PREP [None]
External Constraints
SWAT_CE_X~CHKLST
Revision History
01c_071293 — 2nd Pass

A-120

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 e 01c_071293
Name Unique Identifier

Inspection Meeting Entry Form

SWAT_TP_EE_I-MTG-IN

Purpose

Provides a checklist that determines whether inspection meeting entry criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through tixc moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States * Descriptions Part Of
[None] E [None] SWAT_TP_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT EA_INSP [None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

0lc_071293 — 2nd Pass

A-121

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 ——— 0lc_071293
Name Unique Identifier
Inspection Meeting Exit Form SWAT_TP_EE_I-MTG-OUT
Purpose

Provides a checklist that determines whether inspection meeting exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States ' Descriptions Part Of
[None] i [None] SWAT_T?_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_INSP_I-MTG [None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 ~ 2nd Pass

A-122

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type O].C_O71293
Name Unique Identifier
Inspection Rework Entry Form SWAT_TP_EE_I-REWORK-~IN
Purpose

Provides a checklist that determines whether rework entry criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States * Descriptions Part Of
[None] E [None] SWAT_TF_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_EA_INSP [None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 — 2ad Pass

A-123

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 ———— 0lc_071293
Name Unique Identifier
Inspection Rework Exit Form SWAT_TP_EE_I-REWORK-OUT
Purpose .

Provides a checklist that determines whether rework exit criteria have been met.
Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States EDescriptions Part Of
[None] E [None] SWAT_TP_EE
. Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_INSP_REWORK [None]
External Constraints
SWAT_CE_X-CHKLST

Miol‘lﬂktoq

01c_071293 — 2nd Pass

A1

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 —— 01c_071293
Name Unique Identifier
Inspection Follow-up Entry Form SWAT_TP_EE_I-FOLLOW-IN
Purpose

Provides a checklist that determines whether follow-up entry criteria have been met.
Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States + Descriptions Part Of
[None] E [None} SWAT_TP_EE
: Composed Of
[}
'
Evolves From Events State Transitions (Event/Step) [None]
SWAT_EA_INSP [None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 —~ 2nd Pass

A-125

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type 010_071293
Name Unique Identifier
Inspection Follow-up Exit Form SWAT_TP_EE_I-FOLLOW-OUT
Purpose

Provides a checklist that determines whether follow-up exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States ' Descriptions Part Of
[None] E [None] SWAT_TP_EE
. Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_INSP_FOLLOW [None]
External Constraints
SWAT_CE_X~CHKLST

Revision History

01c_071293 — 2nd Pass

A-126

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Tomplate Type 01c 071293
Name Unique Identifier
Inspection Follow-up Entry Form SWAT_TP_EE_I-FOLLOW-IN
Purpose

Provides a checklist that determines whether follow-up entry criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States Descriptions Part Of
[None] E [None} SWAT_TP_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_EA_INSP [None]
External Constraints
SWAT_CE_X—-CHKLST
Revision History

01c_071293 — 2nd Pass

A127

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 Template Type O 1 C_O 7 1 293
Name Unique Identifier
Inspection Follow-up Exit Form SWAT TP_EE_I-FOLLOW-OUT
Purpose

Provides a checklist that determines whether follow-up exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States EDescriptions Part Of
[None] E [None] SWAT_TP_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_INSP_FOLLOW [None]}
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 — 2nd Pass

A-128

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 —— 0lc_071293
Name Unique Identifier
Inspection Causal Analysis Meeting Entry Form SWAT TP_EE_I-CAUSAL-IN
Purpose

Provides a checklist that determines whether causal analysis entry criteria have been met.
Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States Descriptions Part Of

[None] ' [None] SWAT_TF_EE

. Composed Of

Evolves From Events State Transitions (Event/Step) [None]

SWAT

[None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 — 2nd Pass

A-129

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
2 — 0lc_071293
Name Unique Identifier
Inspection Causal Analysis Exit Form - SWAT_TP_EE_I-CAUSAL-OUT
Purpose

Provides a checklist that determines whether follow-up exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States EDescriptions Part Of
[None] E [None] SWAT_TP_EE
: Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_ET_CAUSAL [None]
External Constraints
SWAT _CE_X-CHKLST

Revision History

01c_071293 — 2nd Pass

A-130

Appendix A. Example Template Usage

Level # Version # and Date
Product Template
Name Unique Identifier
Inspection Process Improvement Meeting Entry Form SWAT _TP_EE_I-PROC-IMP-IN
Purpose

Provides a checklist for determining whether process improvement entry criteria have been met.
Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additional States T:Descriptions Part Of

[None] E [None] SWAT_TF_EE

‘ Composed Of

Evolves From Events State Transitions (Event/Step) [None]

SWAT

[None]
External Constraints
SWAT_CE_X-CHKLST

Revision History

01c_071293 — 2nd Pass

A-131

Appendix A. Example Template Usage

Level # Version # and Date
Product Templat
2 o 0lc 071293
Name Unique Identifier

Inspection Process Improvement Exit Form

Purpose

SWAT_TP_EE_I~PROC—IMP-OUT

Provides a checklist for determining whether process improvement exit criteria have been met.

Comments

All checklists, after completion and usage, are to be forwarded through the moderator to the
super moderator to facilitate process management and metric data collection, respectively.

Additiona) States il)escriptions Part Of
[None] E [None] SWAT_TP_EE
. Composed Of
Evolves From Events State Transitions (Event/Step) [None]
SWAT_EA_PROC~IMP {None]
External Constraints

SWAT_CE_X—CHKLST

Revision History

01c_071293 ~ 2nd Pass

A-132

Appendix A. Example Template Usage

Step 9. Construct Resource Templates. The analyst found that relatively few resources are needed to
support Company-X’s current approach to the SWAT inspection process. One meeting room hasbeen
designated for the SWAT inspection process. Aside from that, an inspection metrics database is the
only other dedicated resource.

Default Set of Resource States:
Available_Exclusively
Available_Shared
Not_Available
Disabled
Suspended

Resource Template: Inspection Meeting Room

Resource Template: Inspection Metrics Database

A133

Appendix A. Example Template Usage

Level # Version # and Date
Resource Template
1 = P 0la_071393
emplate Type -
Name Unique Identifier
Inspection Meeting Room SWAT_SR_MTG-ROOM
Purpose -

Provides a room dedicated for SWAT inspection work.

Comments

SWAT inspection scheduling takes first priority in this room ~ any other use can be over-ridden
if needed by the SWAT team. Typically, nonSWAT inspections also use the room on a regular

(but generally nonintrusive) basis.

Additional States/Descriptions Operational Guidelines/Limits
Schedule_Conflict: Indicates a state of overlapping reservations. . Seating: 22
Reserved_SWAT: Held for use by the SWAT inspection team. Maximum Seating:
Reserved_Inspection: Held for inspection use, but not SWAT.

Reserved_Other: Held for noninspection use.
Part Of Supported Events
[None] Required Supplies/Materials
SWAT (2) Overhead Projectors
SWAT_EA_INSP (1) Flipchart (Paper)
Composed Of SWAT_EA_INSP_I-MTG [Note: File cabinet is to
remain in room for dedi-
SWAT_ET_CAUSAL cated inspection use.)
[None] SWAT_EA_PROC—IMP
External Constraints
{None]
Revision History

01a_071393 — 2nd Pass; new details

A-134

Appendix A. Example Template Usage

Level # Version # and Date
Resource Template
1 it 0la_071393
Template Type -
Name Unique Identifier
Inspection Metrics Database SWAT_SR_J)B-—ME’I‘RIC
Purpose
Provides a common repository for all inspection related metric data.
Comments

The database collects information from the entire inspection. However, SWAT —specific data is
designated as such.

Additional States/Descriptions Operational Guidelines/Limits
[Currently, only the super
[None] moderator, moderators,
the inspection technical
support person, and man-
agers have access to this
Part Of Supported Events repository.]
[None] Required Supplies/Materials
SWAT_ET_INSP
Al
SWAT_ET _INSP_PLAN Al
Composed Of

SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
[None] SWAT_ET_CAUSAL

External Constraints
SWAT_EA_PROC-IMP

[“Company-X Guidelines
on Security and Access
Privileges” (not yet
modelled as an external
constraint).]

Revision History

01a_071393 — 2nd Pass; new details

A-135

Appendix A. Example Template Usage

Step 10. Construct Research Templates. Virtually every aspect of Company-X’s SWAT inspection process
is governed by the manipulation of paper artifacts (such as memorandums, checklists, etc.) Conse-
quently, the analyst has essentially been able to model all significant work represented by a product.

However, one area not currently covered by this approach occurs during the rework stage. Specifically,
the producers can solicit the advice of inspectors for alternative ways to address different defects, The

analyst considers this too important to overlook and decides to capture this part of the process by using
a Research template.

Default Set of Research States:
Unauthorized
Authorized
In_Progress
In_Rework
Disabled
Suspended
Cancelled
Completed

Research Template: Inspector Recommendations

A-136

Appendix A. Example Template Usage

Level # Version # and Date
Research Template
1 e 0la_071393
Name Unique Identifier

Inspector Recommendations

SWAT_SR_INS—REC

Purpose

Provide producers with insights and suggestions.

Comments

During the inspection meeting, discussion of fixes or corrections is specifically prohibited.
However, an inspector can offer that they have one or more suggestions. In such cases, the
producer(s) optionally can solicit such advice during the rework stage.

Additional States :rDescriptions Part Of
[None] . [None]
: Composed Of
E [None]
Evolves From Events State Transitions (Event/Step)
SWAT_EA_INSP
SWAT_EA_INSP_I-MTG [None]
SWAT _ET_INSP_REWORK
External Constraints
[None]

Revision History

0la_071393 — 2nd Pass; new details

A-137

Appendix A. Example Template Usage

Step 11. Construct Internal Constraint Templates.

Default Set of Internal Constraint States:
(NONE)

Following is an indented list of new internal constraint templates:

¢ Internal Constraint Tefnplate: Standard Constraint Templates
— Internal Constraint Template: Commencement permission
- Internal Constraint Template: Suspension permission
— Internal Constraint Template: Recommencement permission
— Internal Constraint Template: Cancellation permission
— Internal Constraint Template: Resurrection permission
— Internal Constraint Template: Completion permission
— Internal Constraint Template: Override permission
— Internal Constraint Template: Executive permission

¢ Internal Constraint Template: Inspection Constraint Templates
— Internal Constraint Template: Reinspection permission
— Internal Constraint Template: Causal Meeting Initiation permission

— Internal Constraint Template: Process Improvement Meeting Initiation permission

A-138

Appendix A. Example Template Usage

Level # I 1 C . T l Version # and Date
nternal Constraint lemplate
1 Tomplate Type O0la_071493
Name Unique Identifier
Standard Internal Constraint Set SWAT_CI_STD
Purpose

. Provides a set of standard constraints consistent with the standard event state set.
Comments i

This set of constraints is intended to allow those with sufficient authority the permission to
“declare” state changes (typically) in events and (rarely) in throughputs and supports. The
SWAT process curreatly limits this authority to event—based state change declarations only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
[None] [None] [None}
General Form Of Constrained Events Associated Roles
(list children)
SWAT_CI_STD_ SWAT SWAT_SP_S—-MOD
COMM
SUSP e on all events ocramin
RECO within the SWAT process.]
CANC
RESU
COMP
OVER
EXEC
Revision History

01a_071493 — 2nd Pass; new details

A-139

Appendix A. Example Template Usage

Level # I 1 C . T 1 Version # and Date
2 nterna gns}tramt emplate 0la 071493
emplate Type —
Name

Standard Commence Permission

Unique Identifier
SWAT_CI_STD_COMM

Purpose

Provides authority to designated roles allowing them to declare “commencement” state transitions.

Comments

As reflected below, this state change declaration authority is applicable to events only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_STD [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
[None] SWAT _EA_INSP SWAT_SP_S-MOD
SWAT ET_INSP_PLAN
- - - SWAT_SP_TEAM_MOD
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET _INSP_FOLLOW
SWAT_ET _CAUSAL
SWAT_ET_PROC~IMP_RECOM
Revision History

01a_071493 — 2nd Pass; new details

A-140

ﬁ

Level # . Version # and Date
2 Internal Constraint Template 0la 071493
Template Type a—
Name Unique Identifier
Standard Suspension Permission SWAT _CI_STD_SUSP
Purpose
Provides authority to designated roles allowing them to declare “suspend” state transitions.
Comments

As reflected below, this state change declaration authority is applicable to events only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT _CI_STD [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
[None] SWAT_EA_INSP SWAT _SP_S-MOD

SWAT_ET_INSP_PLAN
=== SWAT_SP_TEAM_MOD
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL

SWAT_ET_PROC-IMP_RECOM

Revision History

01a_071493 — 2nd Pass; new details

A-141

Appendix A. Example Template Usage

Level # I 1 C . T 1 Version # and Date
5 nterna fr)nsltramt emplate 01a 071493
emplate Type —
Name Unique Identifier

Standard Recommence Permission

SWAT_CI_STD_RECO

Purpose

Provides authority to designated roles allowing them to declare “recommencement” state transitions.

Comments

As reflected below, this state change declaration authority is applicable to events only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_STD [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
{None] SWAT_EA_INSP SWAT_SP_S—-MOD
SWAT_ET_INSP_PLAN
- = = SWAT _SP_TEAM_MOD
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_1-MTG
SWAT_ET _INSP_REWORK
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL
SWAT_ET_PROC-IMP_RECOM
Revision History

0la_071493 — 2nd Pass; new details

A-142

Appendix A. Example Template Usage

Level # I l C . T l t Version # and Date
) nterna fr)nsltralnt emplate 0la 071493
emplate Type —
Name Unique Identifier

Standard Cancelation Permission

SWAT_CI_STD_CANC

Purpose

Provides authority to designated roles allowing them to declare “cancel” state transitions.

Comments

As reflected below, this state change declaration authority is applicable to events only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_STD [None] [None)
General Form Of Constrained Events Associated Roles
(list children)
{None] SWAT_EA_INSP SWAT_SP_S—-MOD
SWAT_ET_INSP_PLAN
= SWAT_SP_TEAM_MOD
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL
SWAT_ET_PROC-IMP_RECOM
Revigion History

01a_071493 — 2nd Pass; new details

A-143

Appendix A. Example Template Usage

Level # I C . T 1 Version # and Date
2 nternal gnsltralnt emplate 0la 071493
emplate Type —
Name Unique Identifier

Standard Resurrection Permission

SWAT_CI_STD_RESU

Purpose

Provides authority to designated roles allowing them to declare “resurrect” state transitions.

Comments

As reflected below, this state change declaration authority is applicable to events only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_STD [None] [None]
General Form Of Constrained Events Associated Roles
(list children) .
[None] SWAT_EA_INSP SWAT_SP_S—-MOD
SWAT_ET_INSP_PLAN
- T - SWAT_SP_TEAM_MOD
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
SWAT _ET_CAUSAL
SWAT_ET_PROC~IMP_RECOM
Revision History

01a_071493 — 2nd Pass; new details

A-144

Appendix A. Example Template Usage

Level # . Version # and Date
2 Internal Constraint Template 0la 071493
Template Type _ a---
Name Unique Identifier
Standard Completion Permission SWAT _CI_STD_COMP
Purpose
Provides authority to designated roles allowing them to declare “complete” state transitions.
Comments)

As reflected below, this state change declaration authority is applicable to events only.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_STD [None} [None]
General Form Of Constrained Events Associated Roles
(list children) :
[None} SWAT_EA_INSP SWAT SP_S-MOD

SWAT_ET_INSP_PLAN
= SWAT_SP_TEAM_MOD
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK

SWAT_ET_INSP_FOLLOW

SWAT_ET_CAUSAL
SWAT_ET_PROC-IMP_RECOM

Revision History

0la_071493 — 2nd Pass; new details

A-145

Appendix A. Example Template Usage

Level # I l C . T 1 Version # and Date
nternal Constraint lemplate
2 2 P 0la_071493
mplate Type —
Name Unique Identifier
Standard Override Permission SWAT _CI_STD_OVER
Purpose T

Provides authority to temporarily override other constraints so as to allow events to proceed.

Comments

This authority allows for overriding entry or exit conditions that are unsatisfied, and allows
events to either start or “finish” is spite of (unsatisfied) constraints that would normally prevent
them from doing so.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT _CI_STD [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
[None] SWAT_EA_INSP SWAT_SP_S-MOD

SWAT_ET_INSP_PLAN
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL
SWAT_ET_PROC-IMP_RECOM

Revision History

01a_071493 — 2nd Pass; new details

A-146

Appendix A. Example Template Usage

Level # I l C . ¢ T l ¢ Version # and Date
nternal Constraint lemplate
2 Template Type O 1 a_07 1 493
Name Unique Identifier

Standard Executive Permission

SWAT_C1_STD_EXEC

Purpose

Provides authority to permanently override constraints.

Comments

Whereas override authority allows for essentially ignoring certain constraints, executive authority
allows those constraints to be permanently declared “satisfied.”

Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_STD [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
[None] SWAT_EA._INSP SWAT_SP_S—-MOD
SWAT_ET _INSP_PLAN
SWAT_ET_INSP_OVER
SWAT_ET_INSP_PREP
SWAT_EA_INSP_I-MTG
SWAT_ET_INSP_REWORK
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL
SWAT_ET_PROC-IMP_RECOM
Revision History

01a_071493 — 2nd Pass; new details

A-147

Appendix A. Example Template Usage

Level # I 1 C . T l Version # and Date
nternal Constraint lemplate
1 . Ola_071493
Name Unique Identifier
Inspection Extended Constraint Set SWAT CI_INS
Purpose

Provides a set of extended constraints for mapping inspection-specific authorities.

Comments

This set of constraints provides a variety of authorities which (when coupled with roles) represent
various discretionary decisions that can be made.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
[None] [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
SWAT_CI_INS_ SWAT SWAT _SP_S-MOD
SWAT_ET_CAUSAL
CAUS
SWAT_EA_PROC-IMP
PRIM -
Revision History

01a_071493 —~ 2nd Pass; new details

A-148

Appendix A. Example Template Usage

Level # . Version # and Date
2 Internal Constraint Template 0la 071493
Template Type a-

Name Unique Identifier

Reinspection Declaration Authority SWAT _CI_INS_REIN
Purpose

Provides authority to declare that a reinspection is necessary.
Comments
Special Form Of Constrained Throughputs Constrained Supports
(parent)

SWAT_CI_INS [None] [None]

General Form Of Constrained Events Associated Roles
(list children)

[None] SWAT_EA_INSP SWAT_SP_S—-MOD
SWAT_EA_INSP_I-MTG SWAT_SP_TEAM_MOD
SWAT_ET_INSP_REWORK SWAT_SP_TEAM_INSP_KEY
SWAT_ET_INSP_FOLLOW SWAT SP_TEAM_INSP_REG

SWAT _SP_TEAM_INSP_READ
SWAT_SP_TEAM_INSP_PROD
Revision History

01a_071493 — 2nd Pass; new details

A-149

Appendix A. Example Template Usage

Level # I 1 C . ¢ T 1 Version # and Date
nternal Constraint lemplate
1 Template Type O 1 a__07 1 493
Name Unique Identifier
Inspection Extended Constraint Set SWAT _C_I__ INS

Purpose

Provides a set of extended constraints for mapping inspection-specific authorities.

Comments

This set of constraints provides a variety of authorities which (when coupled with roles) represent

various discretionary decisions that can be made.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
[None] [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
SWAT_CI_INS_ SWAT SWAT_SP_S-MOD
REIN SWAT_ET_CAUSAL
CAUS
SWAT_EA PROC-IMP

PRIM

Revision History

01a_071493 — 2nd Pass; new details

A-150

Appendix A. Example Template Usage

Level # . Version # and Date
5 Internal Constraint Template 0la 071493
Template Type a...

Name Unique Identifier

Causal Meeting Declaration Authority SWAT _CI_INS_CAUS
Purpose

Provides authority to declare that a causal analysis meeting is necessary.
Comments '
Special Form Of Constrained Throughputs Constrained Supports
(parent)

SWAT_CI_INS [None] [None]

General Form Of Constrained Events Associated Roles
(list children)

[None] SWAT _EA_INSP SWAT SP S—-MOD
SWAT_ET_INSF_REWORK SWAT_SP_TEAM_INSP_KEY
SWAT_ET_INSP_FOLLOW
SWAT_ET_CAUSAL

Revision History

01a_071493 — 2nd Pass; new details

A-151

Appendix A. Example Template Usage

Level # I 1 C . T l Version # and Date
nternal Constraint lemplate
1 o Toe 0la_071493
Name Unique Identifier
Inspection Extended Constraint Set SWAT _£I=INS
Purpose

Provides a set of extended constraints for mapping inspection-specific authorities.

Comments

This set of constraints provides a variety of authorities which (when coupled with roles) represent
various discretionary decisions that can be made.

Special Form Of Constrained Throughputs Constrained Supports
(parent)
[None] [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
SWAT CI_INS_ SWAT SWAT_SP_S—-MOD
SWAT_ET_CAUSAL
CAUS
SWAT_EA_PROC-IMP
PRIM
Revision History
01a_071493 — 2nd Pass; new details

A-152

Appendix A. Example Template Usage

Level # I C . T 1 Version # and Date
) nternal (T)nsltralnt emplate Ola 071493
emplate Type -
Name

Inspection Process Improvement Meeting Declaration Authority

Unique Identifier

SWAT_CI_INS_PRIM

Purpose

Provides authority to declare that a SWAT inspection process improvement meeting is necessary.

Comments

Note: The current policy states that you need three key inspectors to agree that a process improvement
meeting should be scheduled. Such meetings can also occur at the request of either the super moderator

or any of the moderators.
Special Form Of Constrained Throughputs Constrained Supports
(parent)
SWAT_CI_INS [None] [None]
General Form Of Constrained Events Associated Roles
(list children)
[None] SWAT_EA_INSP SWAT_SP_S-MOD

SWAT_EA_INSP_I-MTG
SWAT_EA_PROC-IMP

SWAT_SP_TEAM_MOD
SWAT_SP_TEAM_INSP_KEY

Revision History

01a_071493 — 2nd Pass; new details

A-153

Appendix A. Example Template Usage

Step 12. Bind All Throughput|Support/Constraint Templates to Event Templates. Binding the templates
would proceed as it did in Step 6 when external constraints, roles, and products were bound to the
events. To avoid reproducing over 100 example templates, explicit examples of this second-pass bind-
ing are not shown. However, the resulting templates would be very similar to the current set: the excep-
tion would be references to the extended product, role, and external constraints and to the new
resources, research, and internal constraint templates.-

A-154

Appendix A. Example Template Usage

Step 13. Evaluate Template Set and Improve Clarity/Simplicity. At this step, the process analyst reviews
the templates and edits them to improve clarity and simplicity. Clarity is improved by assuring deliber-
ate and consistent use of naming conventions, indentation conventions, and logical flow constructs
and, as discussed in Section 3, by reducing redundancy.

You can often improve simplicity by removing excess information. In many cases, this results in
removing excessive information from within fields. In some cases, however, a reviewing of a collection
of templates may yield several templates that can be removed altogether (with a corresponding re-
moval of references to those templates from other templates). For example, the process analyst might
elect toremove the two “resource” templates since they do not make a substantive contribution to the
general process model.

A-155

Appendix A. Example Template Usage

Step 14. Derive Petri Net Representation of Process Dynamics. As the final step in this example, the process
analyst uses the templates to facilitate the construction of a Petri net model which represents the
SWAT inspection process. The following Petri net involves a few extensions to facilitate decomposi-
tion of one otherwise rather complex diagram into a collection of diagrams that are easier to depict
and discuss. (If you are unfamiliar with the principles of Petri nets, review the Petri net material near
the end of Section S.)

Token: Used to mark a place.

°
O Place: A location where tokens may reside. In this example, places often represent
events transpiring. Places are connected by arcs to transitions.

Transition: Flow control and coordination mechanism. Connected by arcs to places.

Subnet: Represents an underlying set of places and transitions connected by arcs.

1 @]=

Rule-Driven Transition: A transition that has no input places, but instead fires as aresult
of some event occurring, permission heing granted, etc.

Subnet Entry Connector: Fires whenever a token arrives at a subnet place (see above).

Subnet Exit Connector: Becomes enabled whenever the subnet place is empty of all
tokens (and the exit connector is otherwise enabled).

Switched Transition: When enabled, only one of the output places receives a token.
(These transitions always have two or more output arcs.)

= s

-> Are: Connects places to transitions, and vice versa.

Since Petri nets are especially useful for capturing relationships between events, this example is
derived almost entirely from the event templates constructed above. Using those templates as refer-
ence, the following net can be interpreted as follows. First, in Figure A-1 note that place pl—-2 hasa
token, signifying that the necessary material to support the SWAT inspection program is available.
Since p1—1does not have a token, t1—3 is not enabled. However, when t1—-1 fires (signifying that the
vice president (VP) has given permission for the SWAT inspection process to commence), a token ap-
pearsatpl—1. Since all the input places to t1—3 have tokens, t1—3 is enabled and fires, placing a single
token in each of its output places. In this case, p1—3 is the only output place. While a token exists at
p1-3, the subnet it represents (essentially, the entire SWAT program) is active. Note that t1—4 re-
mains disabled until t1-2 fires (signifying that the VP has requested the SWAT inspection process
cease). When t1-4 fires, the token disappears from p1~3 and a token appears at p1—4 (signifying
the SWAT process has halted). The t1-5 can then fire, and a token appears at p1—2, indicating that
once again, SWAT inspection support material is ready, but that VP permission is needed before the
process can (re)execute.

The next diagram (Figure A-2) is a simple subnet that is itself oomposed to two subnets and models
the task template labeled SWAT (version number 01a_070493). When a token arrives at place p1-3
(above), the convention in this example is that it causes t2—1 to fire, thereby causing tokens to appear
at p2—1, p2—2, and p2—3. Note that even while tokens remain in these places, t2—-2, because it is a
subnet exit, is not enabled unless (as described in the key above) p1-3 is empty of tokens. In other
words, so long as VP permission has not been rescinded, the process improvement, causal analysis,
and inspection activities can all continue in parallel. However, when VP permission is removed, t2—-2
fires, and tokens are removed from p2—1, p2-2, and p2--3.

A-156

Appendix A. Example Template Usage

t1-5

VP Permission
Retracted

t1-2

Program Material
Available
pl-4

SWAT program

VP Permission
Received
Figure A-1. SWAT Inspection Process

SWAT Inspection

Figure A-2. SWAT Program Active

The subnet p2—1is expanded in Figure A-3 and depicts a rendition of the events detailed on templates
SWAT_EA PROC_IMP (version 0lc_070993), SWAT ET PROC_IMP _RECOM (version
01c_070993), and SWAT ET _PROC_IMP_PRESENT (version 01c_070993). Again, when a token
arrives at p2—1, the subnet causes transition t3a—1 to fire and a token to appear at p3a—1. The t3a—6
fires and a token appears at p3a—6 (and disappears from p3a—1). As long as t3a—8 does not become
enabled by a token departing from subnet place p2—1 (above), then only the firing of t3a—7 (indicat-
ing that a meeting is being held) can cause the token to be removed from p3a—6. However, t3a—7
cannot fire until t3a—5 fires and places a token in p3a—S5 (indicating that a moderator has scheduled
the meeting). The firing of t3a—7 causes a token to appear at p3a—4 indicating the meeting is being

A-157

Appendix A. Example Template "Jsage

held. The t3a—4 fires and the resulting token at p3a—3 indicates that there is typically an interval
between when the process improvement meeting has been held and when the results can be reported
to management. A token at p3a—2 (after the firing of t3a—3) represents the meeting in which findings
are presented to management. t3a—2, and then t3a—6 fire, resulting in a token appearing at p3a-6.
In this “marking,” the net is once again ready for the moderator to schedule a meeting, and this activity
can continue as long as a token remains in place p2-1.

Process
Improvement Meetings
Allowed

t3a—1 pla—1 t3a—6 t3a—-8

Presentation of Find-

ings and Recommenda- t3a—5

tions to Management p3a—2 Mprmeetinglir‘ielmd ent
Moderator Schedules

Meeting p3a—4
p3a-3

—O—1F

Ba=3 Waituntitime t3a—4
available on
management schedule

Figure A-3. SWAT Inspection Process Improvement

The subnet p2—3 (Figure A-4) represents the inspection meeting activity depicted by the following
templates:

* SWAT_EA_INSP (version 01b_070793)

¢ SWAT_ET_INSP_PLAN (version 01b_070793)

* SWAT_ET_INSP_ OVER (version 01b_070793)

* SWAT_ET_INSP_ PREP(version 01b_070793)

* SWAT EA_INSP_I-MTG (version 01c_070993)

¢ SWAT _ET_INSP_I-MTG_REIN (version O1c_070993)
* SWAT _ET_INSP_ REWORK (version 01b_070793)

* SWAT_ET_INSP_FOLLOW (version 01b_070793)

A-158

Appendix A. Example Template Usage

The expanded representation of that net is shown in Figure A-4. When a token arrives at p2—-3, t3b—2
fires, leaving just one of three input places to t3b—4 without a token (p3b—2). The firing of t3b—1 (rep-
resenting the arrival of something to be inspected) causes a token to appear in p3b—2, thus enabling
t3b—4. After this transition fires, a token appears at p3b—4 to represent the planning task, which is
then followed by the overview task.

Note that when t3b—6 fires, tokens appear at five separate places. These places represent five
different people performing the preparation task prior to attending the inspection meeting. When
these inspectors are done, t3b—7 fires and a token arrives at p3b—11 which represents the occurrence
of the inspection meeting. Next t3b—8 fires, and a token appears at p3b—12. This represents the origi-
nal producer(s) correcting defects detected and reported by the inspection process. When rework is
complete, t3b—9 fires and places a token at p3b—13 indicating follow-up work by the moderator. At
this point, the moderator makes a final decision whether or not a reinspection meeting is needed. As
represented by the switch transition, t3b—10, a token will either appear back at p3b—11 or, if a rein-
spection is not needed, at p3b—1. As with the other subnets, this subnet continues to remain ready and
executing until the subnet exit connector (t3a—8) fires and removes the token from p3b—1 and (in this
example) permanently prevents further execution of this subnet.

Throughout this example, discussion of time has been deferred in the interests of reduced complexity.
However, it is comparatively easy to construct timed Petri nets. Time can be associated with either
transitions or with places but never (for mathematical reasons) with both. Time associated with transi-
tions causes transitions to wait, after being enabled, for the defined amount of time before they fire.
When associating time with places (as would likely be done in an expanded version of this example)
tokens carry an attribute that determines whether they are available or unavailable. Unavailable to-
kens cannot enable transitions. When a token appears at a place, it is always tagged as unavailable.
It remains unavailable until the determined amount of time for that place has transpired, at that point
the token becomes available. In this example, p3b—6 might have an associated time of four hours (in-
dicating it is expected to take that inspector four hours to complete their preparation). The p3b—7
might have a time of 8 hours; p3b—8, 6 hours; p3b—9, 15 hours; and p3b—10, 12 hours. If this were
the case, 15 hours after t3b—6 fired, t3b—7 would fire. The firing of t3b—7 would always occur after
the maximum of the times associated with its input places, as that would be the amount of time re-
quired for the last token (in this case, at p3b—9) to change from unavailable to available, thereby
enabling t3b—7.

Although a thorough discussion of Petri nets is well beyond the scope of this Guidebook, itisimportant
to note that one of the key advantages to Petri net models is their ability to model the dynamic or be-
havioral characteristics of the processes they represent. The ability to gain dynamicinsights is typically
completely absent from static process representations (i.c., any representation that cannot actually
be executed). If dynamic process insights are important, it is highly recommended that the field of
Petri nets be given further study.

A-159

Appendix A. Example Template Usage

p3b—4

p3b~6

t3b-7

Tnspects
Meeting
p3b—-11

r_'_*_j t3b-8 .

8b-10 p3b-13 13b—9
D‘

Follow—up p3b—-12

Figure A-4. Inspection Activities

P3b-10

A-160

APPENDIX B. ETVX EXAMPLE

The ETVX example is based on the following sample. The ETVX paradigm is a procedural formalism
for representing activities and relationships within PPA. An ETVX box represents the concept that
at any level of abstraction a work activity must have entry (E) and exit (X) criteria, some task (T) to
be done, and some means or collection of means for performing validation (V).

Figure B-1. ETVX Diagram

You archive hierarchical decomposition inETVX by “exploding” the task (T) component of an activity
and showing the subactivities (each in ETVX form) of which it is comprised. (Similarly, any subactivity
can also be further decomposed, as necessary.) Additionally, the ETVX model does not imply that
all activities or tasks in succeeding stages wait for completion of the preceding stages. Later stages may
function (that is, activities occurring) concurrently with preceding stages.

You should note that the ETVX approach does not yield an interconnected diagrammatic representation
of the system being modeled. Instead, ETVX depicts each of the four subcomponents that constitutes
an activity. In the comparative example section, multiple ETVX activities are shown within a loose
network of interconnecting lines. These directed lines should improve your interpretation of this
particular example, but such a diagram is not typical of the traditional ETVX model.

When using the templates, E is the Entry Criteria and X is the Exit Criteria on the Event template.
Use the parent/child relations on the template to define ETVX decomposition. Validation can best

B-1

Appendix B. ETVX Example

be captured by defining a set of events that are explicitly intended for performing validation, and then
heuristically asserting that all events in a given model must, within their internal processing, invoke
one or more events from the validation event tree. Internal Processing, also on the Event template,
maps to the tasks (T) in ETVX, and the Supporting Events from the Process template explicitly de-
scribes the tasks in ETVX. Even though the templates contain all of the information for ETVX, itis
important to remember that ETVX is not an operational representation; ETVX’s usefulness comes
from its conceptual presentation for the process definition.

ETVX is good for defining the high level organizational process since it is less formal than other
models which results in greater flexibility for change as your understanding of the process grows.
ETVX can also be used for defining a process in an environment where management is not willing to
support the process control of a well defined process. ETVX is a good process representation when
" parts of the process (especially low level events defined in more detail) are intended to be automated.
Because ETVX has a hierarchical presentation mechanism essential for representing large and
complex processes, it well represents such processes, but lacks the formality of other models.

B.1 APPROACHES

The general approach for generating an ETVX diagram from the process definition template set is
to run down the event meta-class template and collect the templates. Try to form the event structure
tree from the event related indented list. Then use the tree as a map to fill in the ETVX diagrams one
by one. To fill each ETVX, use the cross reference fields to get the information for validation repre-
sented as event and constraints that use a checklist to validate the inspection. Overall, there are 17
ETVX diagrams shown in the next section. The sequence follows the number on the left of the event’s
name in Figure B-2.

1
SWAT

2 3 4
SWAT_EA_IN SWAT_ET_CAUSAL SWAT _EA_PROC-IMP

5
SW_ET PREC-IMP_PRES

6
SW_ET_PROC-IMP_RECOM

8 10 12

SWAT _ET _INSP_OVER SWAT EA_INSP_I MTG SWAT ET_INSP_FOLLOW
7 9 11
SWAT ET_INSP PLAN SWAT ET _INSP_PREP SWAT_ET_INSP_REWORK

& K
_ET_INSP_I-MTG_TLOG ' ET_INSP_I-MTG _FIND
&nmsn-mwnr &v ET INSP 1-MTG INSP 17
_ET_INSP_ 2 _ET_INSP_ 2 SW_ET_INSP_I-MTG_REIN

Figure B-2. Parent-Child Event Tree Structure

B2

Appendix B. ETVX Example

B.2 ETVX PRESENTATION OF INSPECTION PROCESS

2:?'1‘:-':-5;)(: In Parallel Do...
=tk SWAT state is In_Progress
SWAT_TP_ART Perform SWAT_EA_INSPECT SWAT_TP_MEMO

|
Perform SWAT ET CAUSAL |
f
I

Perform SWAT _EA_PROC-IMP
Until SWAT _CE_VP:
(SWAT_CE_VP:: Require_Cessation

Require_Cessation
OR
_[_Moderator asks to eance_l]

OR

SWAT_CE VP:: SWAT _CE_VP::

Approve_Cessation

In-Process Monitoring:
* SWAT_CI_INS
] * SWAT_CI_STD
* SWAT_TP_EE

SWAT_CE_VP

Figure B-3. ETVX Diagram 1: SWAT

SWAT TP

MEMO_

- e LINV

SWAT_TF_ART Pecform SWAT BT INSP PLAN I_EXIT
SWAT_TP_DOC Perform SWAT _ET_INSP_OVER I_DONE

Perform SWAT_ET _INSP_PREP

rerfomswm'_sr INSP_I_MTG

Perform SWAT INSP REWORK
Petform SWAT " ET] INSP FOLLOW

SWAT _EA_INSP:
Complete

SWAT _TP_ART::

SWAT_CE_PPG
Figure B-4. ETVX Diagram 2: SWAT_EA_INSP

Appendix B. ETVX Example

SWAT_TP_EECAUSAL-OUT
SWAT_TP_EECAUSAL-IN

Take attendance
Review outstanding issues from prior
causal analysis meetings
Report results of trend analysis efforts
Solicit perceived problem areas from

SWAT_TP_DOC_RPT

attendees
Prioritize problem areas S&AT-IH-CAUSAL‘:
Discuss/determine process changes to mpete ,
reduce/remove root causes

At end of meeting; review findings
Dismiss meeting

Compile Causal Analysis Report
‘-’E-‘.— M{R R IR . — A GO S—

* SWAT_CI_INS
* SWAT_CI_STD

Figure B-5. ETVX Diagram 3: SWAT ET_CAUSAL

SWAT_TP_
DOC_RPT Review outstanding issues from prior
process improvement meetings
Solicit suggestions from attendees

Organize suggestions by domsin
Evaluate costbenefit
Prioritize by estimated cost/benefit

¢ SWAT_TP_EE_PROC~IMP_IN
¢ SWAT_TP_EE_PROC-IMP_OUT

Figure B-6. ETVX Diagram 4: SWAT_EA_PROC-IMP

Appendix B. ETVX Example

I Presents general trend data
;l Presents overview of perceived
problem areas
| Presents targeted problem areas
{ Presents overview of proposed
solutions (and a handout

SWAT_TP_
DOC_RPT

SWAT_ET_PROC~IMP: ; Resoonds o details, if necessary)
In_Progréss o T ance v any SWAT ET PROC-IMP_
SWAT_ET_PROC-IMP_ SWAT SP TEAM MOD PRESENT::Complete
RECOM::Complete inattendance)
g = .-$} S SO |

* SWAT_CE_PPG
* SWAT_CI_STD
* SWAT_TP_INS

Figure B-7. ETVX Diagram 5: SW_ET_PREC—IMP_PRESENT

P
SWAT_TP. SWAT_SP_S—MOD presents general
DOC_RPT ~ Trenddata

HAVE EACH IN ATTENDANCE
Presgent top 2 “Opportunities”
Note on board/paper

Prioritize entire list 3

In priority order s
Discuss problem domain S;’EA&EME_PROC;MP-
Discuss solution domain : Compie
Note top 2 or 3 most promising 5

solutions

Oompile«:dpo:itereponofﬁndinp
recommendations

Figure B-8. ETVX Diagram 6: SW_ET_PROC~IMP_RECOM

B-5

Appendix B. ETVX Example

MEMOI-INV

Evaluate the Item to be Inspected
Estimate the expected inspection rate
Construct a schedule

Assign personnel to the schedule
Confirm personne availability
Adjust/Redo schedule as necessary

SWAT_TP_

SWAT_ET_INSP_PLAN
Complete

SWAT_EA_INSP::
In_Progress

| * SWAT_TP_EE PLAN_OUT

5

Figure B-9. ETVX Diagram 7: SWAT_ET_INSP_PLAN

3

INSP

o

SWAT_EA_INSP_PLAN:
Complete

Have Reader present the item to
bei

Dismiss meeting
SWAT_ET_INSP_OVER state is
Com

Figure B-10. ETVX Diagram 8: SWAT_ET_INSP_OVER

Appendix B. EFTVX Example

SWAT_TP_ isperse material to be inspected and
associated support forms
Each Inspector Does:
Review of Relevant Standards
Personal Inspection of Item
Completes Trivial Error Log
Completes Preparation Log
Completes Preparation_Exit
Form (Checklist)
END [Each Inspector Does]
Moderator Collects/Verifies Checklists
Moderator distributes Inspection
Invitation letter

SWAT_EA_INSP:
In_Progress

SWAT_EA_INSP_OVER::
Compiete

SWAT_ET_INSP_PREP::
Complete

In-Process Monitoring:
* SWAT_CI_INS
* SWAT CI_STD
* SWAT_CE_PPG
* SWAT_TP_EE_PREP_IN
* SWAT TP_EE_PREP_OUT

Figure B-11. ETVX Diagram 9: SWAT_ET_INSP_PREP

When (sufficient attendance)
Do SWAT_ET_INSP_I-MTG_PURP
Do SWAT ET_INSP_I-MTG_TLOG
Do SWAT ET_INSP_I-MTG_INSP
Do SWAT_ET_INSP_1-MTG_FIND
Do SWAT_ET_INSP_1-MTG_REIN

END {When)

Produce SWAT TP MBMO l-EXl'I‘

* SWAT_TP_EE_I-MTG_IN
* SWAT_TP_EE_I-MTG_OUT

Figure B-12. ETVX Diagram 10: SWAT_EA_INSP_I_ MTG

B-7

Appendix B. ETVX Example

SWAT_TP_ SWAT _TP_
ART Each SWAT_SP_TEAM_PROD: MEMO_NE
Evaluates pertinent defects 1-DO
SWAT_TP_ Alters product only to correct
DOC_LOG_ the defect
TRIV Notes location and scope of
PREP changes
-4 If Req’'d: makes before and after
SWAT_EA_INSP:: listings until all
In_Progress defects addressed SWAT_ET_INSP_REWORK::
SWAT_EA_INSP_I-MTG:: SWAT_SP_TEAM_MOD notified that Complete
Complete all changes are complete
S, e o A e sow—
* SWAT_CI_INS
* SWAT_CI_STD
* SWAT_CE_PPG
* SWAT_TP_EE_REWORK_IN
] * SWAT_TP_EE REWORK_OUT
1 T
Figure B-13. ETVX Diagram 11: SWAT_ET_INSP_REWORK
SWAT_TP_ SWAT_TP_
ART Meet with the suthor(s) Mmio.
SWAT TP_ Discuss nature and scope of changes -
DOC_LOG_ Evaluate each change

Confirm only authorized changes made

Determine whether a reinspection needs
to be conducted

Moderator completes the followup
checklist

]

SWAT ET INSP_FOLLOW=
Complete

* SWAT_CI_INS
* SWAT_CI_STD

* SWAT CE_PPG

* SWAT_TP_EE_FOLLOW_IN

Figure B-14. ETVX Diagram 12: SWAT_ET_INSP_FOLLOW

Appendix B. ETVX Example

SWAT_TP_ Start_Time has Passed AND

rCommence when
] Sufficient Key Inspectors Avail.

| else

Wit until sufficient key insp. OR
] . Moderator decides to cancel
1f SWAT_SP_TEAM_MOD has NOT
decided to cancel
Briefly overview item
Note applicable SWAT_CE_PPG
State agenda

SWAT_ET_INSP_I-MTG_
PURP::Complete

SWAT_ET_INSP_I-MTG_
PURP::Cancel

SWAT_EA_INSP_I-MTG::
In_Progress

Figure B-15. ETVX Diagram 13: SW_ET_INSP_I-MTG_PURP

SWAT_TP

(SWAT_SP_TEAM.

TRIV

SWAT_EA_INSP_I-MTG::

values (insist on metrics, i.e.,)
In_Progress hours speat, etc) I SWAT ET_INSP_I-MTG._
SWAT_ET_INSP_I-MTG_ 3 TLOG:Complete
PURP::Complete % v

Figure B-16. ETVX Diagram 14: SW_ET_INSP_I-MTG_TLOG

B-9

Appendix B. ETVX Example

SWAT_TP_
ART
SWAT_TP_ while not done
DOC_LOG_ SWAT _SP TEAM_READ presents the S T
TRIV x
PREP section by section

SWAT _SP_TEAM_INSP _(all) provide
feedback and comments based on

|
‘ material by advancing through it
|
J
|

SlWAg‘r_EA_lNSP_I-MTG ; their notes, and on the current

n_trogress examination SWAT_ET_INSP_I-MTG_
SWAT_ET_INSP_I-MTG_ SWAT_SP TEAM_SCRIBE notes all INSP:Complete
TLOG:Complete S

In-Process Monitoring:
* SWAT CI_INS
* SWAT _CI_STD
* SWAT TP_EE

Figure B-17. ETVX Diagram 15: SW_ET_INSP_I~-MTG_INSP

: SWAT TP_
""'..&-- 3 -nd“—.m'?’;ﬁ?%’u e DOC_wG-
T Review all findings with those in TRIV
SWAT_TP " antendance PREP
ART 7 While preseating the material, remind the
SWAT EA_INSP_1-MTG: tupecton ‘:;{‘,’,‘i':: their prep logs
In_Progress Update findings (a composite version of
SWAT ET INSP_I-MTG._ SWAT ‘TP_DOC_LOG_PREP) |
INSP:Comp e o

Figure B-18. ETVX Diagram 16: SW_ET_INSP_I-MTG_FIND

B-10

— - |

Appendix B. ETVX Example

SWAT_TP_
ART
SWAT_TP_
DOC LOG Remind team of reinspection criteria
TRIV ~ Remind team of reinspection voting SWAT_TP_
PREP process (i.e, 1 yel vote = reinsp. DOC_RPT

or majority, etc.)
Take vote
Note on SWAT_TP_DOC_RPT whether

—MTG: reinspection will be held
SXA;,[;B%;‘;:NSP—I i If reinspection not expected
= Remind group that Moderator can SWAT_ET_INSP_I-MTG_
SWAT_ET_INSP_I-MTG_ optionally call for reinspection REIN:Compicte
FIND:Complete Dismiss meeting

1 In-Process Monitoring:
* SWAT_CI_INS

Figure B-19. ETVX Diagram 17: SW_ET_INSP_I-MTG_REIN

B-11

Appendix B. ETVX Example

This page intentionally left blank.

B-12

APPENDIX C. SADT EXAMPLE OF SWAT
PROCESS

When applying the SADT to software systems, the overall approach consists of:
* Identifying activities.
* Identifying the inputs and outputs of those activities.
¢ Identifying factors that constrain the activities.
* Identifying resources or materials that support the activities (Marca and McGowan 1988).

As Figure C-1 depicts, an activity is represented diagrammatically as a box. Inputs to an activity are
labeled arrows arriving at the left side of the box. Outputs from an activity are labeled arrows departing
from the right side of the box. Constraining influences are labeled arrows arriving at the top of the box,
and enabling mechanisms are labeled arrows arriving at the bottom of the box.

Control
(detail introduced for the
Control giret time in this picture)

——————> Output
Input Activity
Input ———————> Output)
(detail introduced for the (detail not further mentioned
first time in this picture)) outside of this figure)
!
I
!
Mechanism

Figure C-1. SADT Diagram

The outputs from one box may be the inputs, controls, or enabling mechanisms for any other box
(including, in rare cases, itself). Boxes are all named, and all arrows carry labels. Arrows are allowed
to be split into multiple branches or join to combine multiple branches into one. Any box can be
decomposed into any number of subboxes. These, in turn, can be decomposed. You can continue such
decomposition until the necessary level of detail has been achieved. Inputs, outputs, and controls

C1

Appendix C. SADT Example of SWAT Process

define the interfaces between boxes, and enabling mechanisms allow controlled mixing of subjects.
When a box is “exploded” to yield a new subordinate diagram, the box and diagram boundaries must
match.

Commonly, it is the throughputs from the templates that are modeled in SADT as arrows arriving at
the left side of a box and departing from the right side of a box. Constraints (especially external
constraints) are modeled as “control” arrows arriving at the top of an SADT box. The support tem-
plates (roles and resources) can be used (from the event perspective) to represent the enabling mecha-
nisms. Further, SADT also allows for capturing a considerable amount of text information, so the
comment field and other relevant information can also be ported across.

SADT is perhaps the most popular process notation being used to date. It has been widely used for
software system design, and there are a number of automated tools available on the market which sup-
port the technique. SADT is capable of being used for large scale process definition, but SADT is still
not formal enough. For example, an SADT link can only carry the syntactic structure of the process
information, but it cannot carry the semantics of the enactment. For SADT to be enactable, a process
engineer must define the type of link on the SADT diagram then implement the semantics of the link.
Along with the SADT diagram, the process engineer should also use the data dictionary for imple-
menting enactment. Other SADT limitations include the number of blocks in a diagram along with
the difficulty of representing the concept of role play for a process. However, SADT can be relatively
easy to use for defining large processes, since it is capable of representing higher level abstraction and
process decomposition structure.

C.1 SADT EXAMPLE

The SWAT process has been modeled as a four level (0-3) event tree in the process template in
Appendix A. As shown in Figure C-2, the SWAT is the root process; the templates are translated to
SADT according to the approach listed in Section 5. In the SADT example, there are five SADT dia-
grams, as they are marked in the Figure C-2. Figure C-3, is the SADT Diagram0 in the event tree. It
is the top level of the event tree. Figure C-4 SADT Diagram1, Figure C-5, is the SADT Diagram2,
Figure C-6 is the SADT Diagram3, and Figure C-7 is the SADT Diagram4.

C2

Appendix C. SADT Example of SWAT Process

' SWAT_ET_INSP_OVER SWAT_EA_INSP_I MTG SWAT_ET_INSP_FOLLOW |
' SWAT_ET_INSP_PLAN SWAT_ET_INSP_PREP SWAT_ET_INSP_REWORK '
L S '
SADT Diagramé
[it infefialiadi el lidindindiediadiadiadiy iadiediliadi it bt Sl aiiediadind Rdiadhalialiadiatiiatiadindl (el it]
L} 1]
' SW_ET_INSP_I-MTG_TLOG SW_ET_INSP_I-MTG_FIND !
[L}
SW_ET_INSP_1-MTG_PURP SW_ET_]NSP_LMI‘G_INSP SW_ET INSP_I-MTG_REIN
[»
Figure C-2. Parent-Child Event Tree Structure
SWAT CI.STD SWAT_CE_VP
SWAT_CE_PPG SWAT_CI_INS
SWAT _TP_ART |————> SWAT_TP_MEMO
SWAT 3 SWAT_TP_DOC
SWAT_TP_ L ———» SWAT TP EE
sz_ SR SWAT__IP_
Figure C-3. SADT Diagram 0: SWAT
C3

Appendix C. SADT Example of SWAT Process

CE_PPG CI_STD 1\
TP MEMO CLINS
TP_ART—
TP_EE EE
_P\ N SR METRIC
TP DOC| _

SR_ROOM SP ﬁm

<& rodw | ~—
SP_S—-MOD

Figure C-5. SADT Diagram 2: SWAT_EA_PROC~IMP

EE_I-PROC-IMP_OUT

MEMO_PROC-IMP

Appendix C. SADT Example of SWAT Process

TP ART CE-PPG

TP_EE

TP_MEMO
CI_STD TP EE
CLINS
|
»
>
>
>
EE_I-MTG

o EE_REWORK

srR!.

ROOM

Figure C6. SADT Diagram 3: SWAT_EA_INSPE

CS5

Appendix C. SADT Example of SWAT Process

SR_ROOM

SP_TEAM

Figure C-7. SADT Diagram 4: SWAT_EA_INSP_I MTG

APPENDIX D. STATE TRANSITION DIAGRAMS

Shown below is a simple example of the use of state transition diagrams (STDs) to support representations
of processes. STDs have a very limited set of conventions that can be used in process modeling.
Although this has advantages (they are, for instance, relatively easy to learn) there are limitations to
traditional state diagrams. These limitations include the difficulty of modeling parallel or simulta-
neous state machines that execute cooperatively. Furthermore, state machine models quickly become
complex, and interpretation of such models becomes correspondingly more difficult. Virtually all the
significant limitations encountered using STDs have been addressed by a superset notation called
Statecharts (see Section 6 for more information on both STDs and Statecharts).

Nevertheless, STDs are still useful for presenting small models of phenomena or objects whose behavior
or characteristics are describable using a relatively limited number of state transitions. The example
below is quite small, so as to emphasize the potential readability of this type of diagram.

In the example scenerio from Section 7 (on which the following diagram is based), all products that
are submitted for inspection transition through the same general set of states. To make this diagram
more interesting, the state set for items to be inspected is expanded to include the following possible
states:

¢ Pre-Inspection

* Pre-Planning

* Pre-Preparation

* In-Preparation

* Post-Preparation

* In-Inspection

* In-Rework

¢ Passed-Inspection

* Released

In Figure D-1, states are depicted in italicized, bold face type and events that cause state transitions
are shown in standard typeface. States are shown as circles, and the directed arcs which connect the
circles represent various events. (Further information on interpreting STDs can be found near the end
of Section 5.)

D1

Appendix D. State Transition Diagrams

Pre-I; ion Pre-Planning Pre-Preparation

ST, O Released for
Item accepted Item analyzed P{Z spj:tt?;n
for inspection for resource pa
Item rejected as not planning
ready for inspection
In-Preparation
END
. Returned from
Released In-Rework Item submitted for I or
Preparation
Item sent O Post-Preparation
to Moderator
Follow-up work Item forwarded to
performed Inspection Meeting

Passed-Inspection be “OK as is” In-Inspection

Figure D-1. State Transition Diagram

As discussed in Figure D-1, STDs are particularly useful for rendering simple diagrams of comparatively
simple phenomena.

It should also be stressed that this diagram differs in perspective from the examples rendered in other
notations. Specifically, this diagram does not attempt to depict the SWAT inspection process; instead,
it depicts the evolution of an inspectable item through that process. However, the same notational
conventions shown above can also be used to develop an STD from the perspective of the process itself.

D-2

GLOSSARY

Constraint Process constraints describe the limiting conditions
associated with the activation, performance, or
cessation of an event. Whereas supports can be
viewed as those things required to enable or make
the right things happen, constraints can be viewed as
those things required to disable or prevent the wrong
things from happening. In this guidebook,
constraints have been divided into two general types:
internal constraints and external constraints.

Contract Aformal agreement on a set of externally observable
process enactment states and results. This agree-
ment is a process constraint, whose violation has le-
gal consequences (which are outside the process
space unless that aspect is modeled as well).

Cycle A traversal of all four quadrants of the spiral model,
which donates that some aspect of the product has
matured by a specific amount.

Estimate of the situation (EoS) A document that identifies the project’s goals,

strategies, product and process assumptions, and the
assets available for performing a project.

Events Events are processes, activities, or tasks.

External Constraints External constraints include all factors that may limit
or constrain how an event proceeds, that are not di-
rectly attributable to local authority (which are mod-
eled as internal constraints). Examples of external
influences that may constrain an event include quali-
ty requirements, corporate standards, division poli-
cies, engineering procedures, process guidelines, and
management directives. External constraints differ
from internal constraints in that theyare typically not
subjecttodiscretionary use—theyare intended tobe,
and expected to be, explicitly followed, regardless of
project-specific issues.

Gio-1

Glossary

Guidance

Internat Constraints

Policy

Precision

Predictability

Process

Process architecture

The use of a process definition (constraint) by an
observer or process agent to provide the enacting
process agent with the legal set of process step
options at any point of the enactment of the observed
process. This may involve process cues, process
interaction, or process management.

Internal process constraints are typically managerial
in nature and usually take the form of authority and
permission. Examples of internal constraints include
management authority or permission required be-
fore an event can commence. Internal constraints
also convey authority toroles to suspend events, can-
cel events, re-commence events, cease events, etc. In
all cases, internal constraints are always coupled with
a role (typically a role signifying lead or managerial
responsibility, but in all cases a role signifying—by
definition—some form of authority). As a rule, inter-
nal constraints are those constraints that you have
authority to change, countermand, enforce, etc.

A guiding principle; a process constraint, usually at
a high level, that focuses on certain aspects of a
process and influences the enactment of that process.

The degree to which the process definition
completely specifies all the actions needed to pro-
duce accurate results. That is, a precisely defined
process, executed with fidelity, produces an accurate
result.

An indication that either the process is intended to
terminate and does terminate, or that the process is
intended to be nonstop and that it does continue until
terminated by a control process (or its agent).

Aseries of actions or operations conducing to an end.
A series of actions intended to reach a goal, possibly
resulting in products.

A conceptual framework for incorporating process
elements in consistent ways (or for signaling that the
process element is incompatible with the architecture).

A framework within which project-specific processes are
defined.

Glo-2

Glossary

Process control

Process definition

Process evolution

Process model

Process modeling

Process representation

The external influence over process enactment by
other enacting processes. This influence may be
driven by process evaluation and may be through
control of the process enactment state, reassignment
of resources, or change of process goals through
process evolution.

An instantiation of a process design for a specific
project team or individual..It consists of a partially
ordered set of process steps that is enactable. Each
process step may be further refined into more
detailed process steps. A process definition may
consist of (sub)process definitions that can be con-
currently enacted. Process definitions, when
enactable by humans, are referred to as process
scripts. Process definitions for nonhuman enactment
are referred to as process programs.

The evolution of process definitions (static) as well
as the evolution of enacting processes (dynamic),
¢.g., nonstop processes. Both static and dynamic
change must be managed to ensure stability of the
process and control over the process results.

A possibly partial process definition for the purpose
of modeling certain characteristics of an actual
process. Process models can be analyzed, validated,
and, if enactable, simulates the modeled process.
Process models may model at the process
architecture, design, or definition level. Process
models are at times used to predict process behavior.
Process models themselves have an architecture, a
design, and a definition.

Process modeling both extends and constrains
process definition by requiring that the process mod-
el adheres to a predefined set of objects, relation-
ships, methods, and structural conventions, the latter
of which are often rendered graphically.

A general termreferring to the combined or sequential
efforts of jointly performing process definition and
process modeling.

Glo-3

Glossary

Process supports

Products

Project

Project management

Project manager

Redundancy

A process support is any non-throughput item that is
needed by an event for the event to be performed.
Events need throughputs, as that typically is the pur-
pose of events: to accept one or more throughputs,
modify, manipulate, inspect, and possibly create one
or more new throughputs, and pass those along to
other events. However, more is needed by an event
than just the throughputs. These non-throughput
items are all modeled as supports. Two common
types of support include roles and resources.

Product artifacts are tangible throughputs within a
process. This type of throughput typically represents
the vast majority of artifacts that pass through a pro-
cess. Examples include code modules, end-user
guidebooks, circuit boards, and anything else tangi-
bly produced by a process. Products can be decom-
posed into subproducts, sub—subproducts, etc. This
decomposition is captured within a model by the
inclusion relation.

An enactable or enacting process whose architecture
has control processes (project management) and
enacting processes performing the project tasks.

An enactable or enacting process whose goal is to
create project plans and, when authorized, instanti-

. ate them, monitor them, and control their enact-

ment. These responsibilities are commonly known as
project planning (i.e., development of process plans)
and project control (i.e., process evaluation of plan
information and process control to make adjustments,
if necessary).

A human agent enacting the control process
responsible for the execution of a project.

A process task or step that is not required by an
error-free enactment. Redundancy thus compensates
for human or other errors in process enactment.

Glossary

Research

Resources

Robustness

Role

Spiral
Task

Research is a by-product of a process; but it differs
from products in that research is considered intangi-
ble. If for instance, the research leads to a technical
paper, that technical paper is modeled as a product.
However, if experiments or investigations are being
performed within one or more events, but nothing
tangible is available as evidence of the work, the
throughput can still be explicitly modeled as a re-
search (intangible) artifact. As with products, re-
search can be decomposed into subresearch, sub-
subresearch, etc. This decomposition is captured
within a model by the inclusion relation.

Resources are nonhuman items needed to supportan
event. Examples include equipment, office space,
supplies, funding, etc. All items that might be re-
quired to support an event can be modele.. as re-
sources. Resources can be decomposed (using the in-
clusion relation) so that while one level of event ab-
straction shows that the training building is required,
at a lower or more detailed level of abstraction the
support might show that only a small classroom is
actually required.

The degree towhich the process rejects unauthorized
process control and/or modification (intrusion).

Roles commonly represent either individual humans
or humans working in concert toward a common goal
or set or goals. Consequently, “programmer,” “man-
ager,” “clerk,” etc., all define roles that can be as-
sumed by individuals. However, “programming
team,” “inspection department,” and “quality assur-
ance division” also define roles. In the latter case, the
roles are essentially organizational roles as opposed
to individual. For process definition, roles can be
defined at all levels of abstractions.

One or more cycles.

A process (step), typically enacted by a human,
requiring process planning and control.

Glo-$

Glossary

Throughput

A throughput is either a tangible or intangible artifact.
Throughputs usually refer to intermediate and final
(sub)products of the software development process.
They can be a physical artifact, usually modeled as a
product (such as a module, a document, or a sched-
ule) or an intangible artifact, such as the knowledge
gained from having performed research.

Boehm, Barry W.
1981

1986

1988

1989

Campbell, I.
1986

Charette, Robert N.
1991

Coleman, Glennl..,
Charles P. Ellison,
Gentry P. Gardner,
Daniel L. Sandini, and
John W. Brackett

1990

Cruickshank, R.D., and
J.E. Gaffney, Jr.
1992

Department of Defense
1985
1988

Feiler, Peter H., and
Wiatts S. Humphrey
1992

REFERENCES

Software Engineering Economics. Englewood Cliffs, New Jersey:
Prentice-Hall.

A Spiral Model of Software Development and Enhancement.
ACM Software Engineering Notes 11:22—42.

A Spiral Model of Software Development and Enhancement.
IEEE Computer 21:61-72.

Tutorial: Software Risk Management. Washington, D.C.: IEEE
Computer Society Press.

PCTE Proposal for a Public Common Tool Interface. Software
Engineering Environments, IEEE Computing Series 7.

Risk Management Seminar. Herndon, Virginia: Software
Productivity Consortium.

Experience in Modeling a Concurrent Software System Using
STATEMATE. Proceedings of the 1990 IEEE International
Conference on Computer Systems and Software Engineering,
104-108.

A Software Cost Model of Reuse Within a Single System.

Conference on Analytical Methods in Sofiware Engineering
Economics. McLean, Virginia: MITRE Corp.

Technical Reviews and Audits for Systems, Requirements, and
Computer Programs, DOD-STD-1521B. Washington, D.C.:
Department of Defense.

Military Standard: Defense System Software Development,
DOD-STD-2167A. Washington, D.C.: Department of Defense.

Software Process Development and Enactment: Concepts and
Definitions, CMU/SEI-02-TR-4. Pittsburgh, Pennsylvania:
Software Engineering Institute, Carnegie Mellon University.

Ref-1

References

Haral, David
1988

Henderson, W, and P. Taylor
1991

Humphrey, Watts S.
1990

Kellner, M.
1989

Kolman, Bernard, and
Robert C. Busby
1984

Levis, Alexander
1992

Marca, David A., and
Clement L. McGowan
1988

Minsky, N., and
D. Rozenshtein
1988

Radice, Ronald A., and
Richard W. Phillips
1988

Rodden, T., P. Saywer, and
1. Sommerville
1988

Sanden, Bo
1992a

1992b

Statecharts: A Visual Formalism for Complex Systems.
Department of Applied Mathematics, The Weizmann Institute
of Science, Rehovat, Israel. 1986. (Eventually published under
the same title in 1987 in Science of Computer Programming,
8(1987):231-274.)

Embedded Processes in Stochastic Petr: Nets. JEEE Transactions
on Software Engineering 17, 2.

Managing the Software Process, SEI Series in Software
Engineering.

Representation Formalisms for Software Process Modeling.
Proc. 4th Intemational Software Process Workshop.

Discrete Mathematical Structures for Computer Science.
Englewood Cliffs, New Jersey: Prentice-Hall Inc.

Classlecture notes during ECES90/SYST659 Spring 1992 course
at George Mason University.

SADT: Structured Analysis Design Technique. McGraw-Hill Book
Company.

A Sofiware Development Environment for Law-Governed Systems,
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments.

Software Engineering: An Industrial Approach. Englewood Cliffs,
New Jersey: Prentice-Hall Inc.

Interacting with an Active, Integrated Environment, Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments.

Software Systems Construction: Sequential and Concurrent
Designs Implemented in Ada. Pre-Published Textbook used at
George Mason University for Spring 1992. Material is the
property of Bo Sanden and Prentice Hall.

3.0 Statecharts. Supplemental Handout #2 for INFT821. Spring
1992: George Mason University.

References

Singh, Baldev, and Gail L. Rein Role Interaction Nets (RINs): A Process Description Formalism,

1992

Singh, Baldev
1992

Software Productivity
Consortium
1991

1992a

1992b

Stenning, V.
1986

Strelich, T.
1988

Taylor, R. et al.
1988

CT-083-92. MCC Technical Report.

Interaction Roles: A Coordination Model, CT-084-92. MCC
Technical Report.

- Evolutionary Spiral Process Guidebook, SPC-91076-MC.

Herndon, Virginia: Software Productivity Consortium.

Process Engineering With the Evolutionary Spiral Process Model,
SPC-92079-CMC. Herndon, Virginia: Software Productivity
Consortium.

Software Measurement Guidebook, SPC-91060-MC. Herndon,
Virginia: Software Productivity Consortium.

An Introduction to ISTAR, Software Engineering Environments,
IEEE Computing Series 7.

The Software Life Cycle Support Environment (SLCSE); A
Computer Based Framework for Developing Software Systems.
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments.

Foundations for the Arcadia Environment Architecture.
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments.

References

This page intentionally left blank.

BIBLIOGRAPHY
Britton, K.H., R.A. Parker, and D.L. Parnas. “A Procedure for Designing Abstract Interfaces for
Device Interface Modules,” Proc. SICSE. 195-204, 1981.

Clements, P.C., R.A. Parker, D.L. Parnas, J.E. Shore, and K.H. Brittoxi.A Standard Organization for
Specifying Abstract Interfaces. NRL Report 8815, June 14, 1984.

Curtis, B. Modeling, Measuring, & Managing Software Development Process. The M3 Life Boat for
Software Tarpits. Tutorial #4, The 13th Internal Conference on Software Engineering, 1991.

Dijkstra, EW. “Co-operaiing Sequential Processes.” Programming Languages, Edited by F. Genuys.
New York: Academic Press, 43-112.

Feiler, Peter, and Watts Humphrey. Software Process Definitions Draft Document. Pittsburgh,
Pennsylvania: Software Engineering Institute, Carnegie-Mellon University, 1991.

Guindon, R. A Framework for Building Software Development Environments: System Design as
1ll-structured Problems and as an Opportunistic Process. MCC Technical Report STP-298-88, 1988.

Kirby, J. Jr., R.C.T. Lai, and D.M. Weiss. “A Formalization of a Design Process.” Proc. 1990 Pacific
Northwest Software Quality Conference. Oct. 29-31, 1990:93-114.

Osterweil, L. “Software Processes Are Software Tvo.” Proc. 9ICSE. March 1987.

Parnas, D.L. “On the Criteria to be Used in Decomposing a System into Modules.” Communications
of the ACM 15,12 (1972):1053-1058.

Parnas, D.L. and P.C. Clements. “A Rational Design Process: How and Why to Fake It.” IEEE
Transactions on Software Engineering, February 1986.

Potts, C. “A Generic Model for Representing Design Methods.” Proc. 11ICSE, 1989.
Potts, C., and G. Bruns. “Recording the Reasons for Design Decisions.” Proc. 10ICSE, April 1988.

Rendes, Barry, and Ralph M. Stair, Jr. Quantitatii»eAnaIysic for Management. Third. Allyn and Bacon
Inc., 1988.

Bidb-1

Bibliography

This page intentionally left blank.

Bib-2

